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Refined RFP Loop Voltage Calculation 

J. C. Sprott 

I. Introduction 

A critical figure-of-merit for RFP devices is the loop voltage. 

Low loop voltage implies high plasma temperature and long energy 

confinement time. In simplest form, the loop voltage is obtained from 

the voltage induced in a single-turn toroidal loop at the plasma 

surface, and hence its name. For more careful work, it is necessary to 

correct the voltage thus obtained for a number of effects. 

To begin with, the measured voltage in general depends on the 

poloidal location of the loop since the plasma surface may not be a 

surface of constant flux, especially in an air-core machine with a 

highly resistive confining shell or with an internal limiter or 

resistive liner. In some experiments, a number of loops are placed 

around the plasma at different poloidal locations and connected in 

series, and the loop voltage is obtained by dividing the measured 

voltage by the number of turns. In a device such as MST with a highly 

conducting shell, the plasma surface closely approximates a flux 

surface except for small soak-in effects and field errors at the 

poloidal gap, and hence all loops at the plasma surface will give 

nearly identical results. We will hereafter reserve the term "surface 
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voltage" for the voltage measured in this way. 

It is often convenient to place the loop outside the vacuum liner, 

and, in some cases, also outside the conducting shell (which in MST is 

the same as the vacuum liner). In such a case it is necessary to 

correct for the flux between the surface on which the loop measures and 

the plasma surface in order to calculate the surface voltage. The 

correction is smallest if the loop is as close to the outside of the 

shell and as far from the primary windings as possible. 

If the plasma is in steady state (constant plasma current, 

constant toroidal magnetic flux, constant plasma internal energy, and 

constant magnetic field profile), the surface voltage measurement as 

described above, along with a measurement of the total toroidal plasma 

current, would suffice to determine the ohmic input power (from the 

product) and plasma resistance (from the ratio). With additional 

assumptions and/or measurements, the energy confinement time and plasma 

temperature can be deduced from the input power and resistance. If the 

plasma is not in steady-state, the required corrections can be large. 

The purpose of this note is to examine more critically the 

necessary corrections and to refine the presently used formula from 

which the loop voltage in MST is calculated from the measured 

quantities (as described in PLP 1039). 

II. Generalized Definition of Loop Voltage 
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A convenient starting point is the equation for energy balance of 

the plasma, 

(1) 

where V$ is the surface voltage in the toroidal direction, Ve is the 

surface voltage in the poloidal direction, Ip is the net plasma current 

encircling the toroid, It is the net current in the toroidal field 

circuit piercing the hole in the toroid, Urn is the stored magnetic 

energy, Up is the plasma energy, and 'E is the global energy 

confinement time, which is in effect defined by the above equation and 

is generally the unknown for which Eq. (1) is solved. 

A reasonable and convenient generalization is to define the loop 

voltage V� such that 'E is simply given by 

(2) 

which when combined with Eq. (1) gives 

where 

U Urn + Up = I (B2/2.0 + 3p/2) dV (4) 

B is the magnetic field, p is the plasma pressure ( assumed isotropic ) , 
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and the integral is over of the plasma volume. 

The loop voltage evaluated as in Eq. (3) is sometimes called the 

"resistive voltage" since it is the voltage that must be multiplied by 

the plasma current to get the ohmic input power to the plasma. The 

resistive voltage is sometimes defined to exclude the dUp/dt term which 

is smaller than dUm/dt by a factor of the order of the plasma beta. 

Our definition is preferred because it leads to a simpler evaluation of 

LE and because U is more nearly constant than either Um or Up since an 

increase in Up results in a diamagnetic decrease in Um• 

III. Correction for Wall Flux Soak-in 

Assume that the loop used to measure the toroidal voltage is 

separated from the plasma surface by a conductor of resistivity p, 

permeability �o and thickness d and that the field just outside the 

conductor is negligible compared with the field inside. The externally 

measured voltage will be denoted by Vpg in accordance with local 

convention since it is the voltage drop across the poloidal gap as 

measured from outside the vacuum. The voltage difference Vpg - V� is 

due to the time-derivative of the poloidal flux that has soaked into 

the wall. As described by Kerst and Sprott [J. Appl. Phys. 60, 475 

( 1986)], this correction can be represented in the plane approximation 

as the voltage drop across the R-L network shown in Fig. 1, the low­

frequency limit of which is given by 
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(5) 

where in the large aspect ratio (Ro/a) limit, Rw and Lw are given by 

(6) 

Note that this calculation is appropriate only up until the time at 

which significant field begins to soak through the wall. In the truly 

dc limit, the wall current resistively decays to zero and no correction 

is required. Thus a more proper calculation requires one to measure 

the wall current and to use its value in place of Ip in Eq. (5). A 

similar correction would be required for determining Ve from the 

toroidal flux loop Vtg (using values of L and R smaller than those in 

Fig. by a factor of a2/R 2) 
0 

except for the fact that the toroidal 

flux loop is inside the vacuum vessel in MST. 

IV. Representation in Terms of Measured Quantities 

An exact evaluation of Eq. (3) requires a measurement of the 

magnetic field and plasma pressure profiles. Such measurements are 

difficult, and thus it is usually necessary to invoke some model (such 

as the Bessel function model of Taylor) to calculate the required terms 

from easily measured quantities such as �t' Ip and It. Fortunately, 

there is considerable experimental evidence that RFP plasmas tend to 

relax to a unique magnetic field profile and beta that can be 

characterized by any two of the above three quantities. Choosing �t 
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and Ip as the state variables, Eq. (3) can be written in the form 

VQ, 

where 

au 
L (8) 

Ip dIp 4>t =const 

and 

au 
A 

Ip a4>t Ip=const Ip 

In Eq. (9) use has been made of the fact that Va 

(9) 

The quantity L has dimensions of inductance, and the quantity A is 

a dimensionless number that we will hereafter refer to as the coupling 

coefficient since it describes the coupling of the toroidal and 

poloidal field circuits. In accordance with the above, there is reason 

to hope that L and A can be expressed in terms of either a or F as 

given by 

a (10) 

and 

F ( 11) 

The extent to which L and A can be expressed as functions of a 

independent of the chosen model will be the subject of much of the 
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remainder of this note. 

V. Prediction of the Polynomial Function Model 

The calculation of the loop voltage in MST has to date made use of 

the polynomial function model (PFM) [described in Phys. Fluids ll, 2266 

( 1988)J. The polynomial function model has the virtue of agreeing with 

the Bessel function model (constant jiB) near the axis, but with j 

falling smoothly to zero at r=a as in the modified Bessel function 

model and as observed in experiment. B and j are given by analytic 

functions of r, facilitating calculation, and a small perpendicular 

current is allowed, corresponding to a value of beta close to that 

experimentally observed. The predicted F-e curve agrees as well with 

experiment as does any of the many other models in common use. 

The polynomial function model leads to a prediction of L (e) and 

A (e) which are well fit by the functions: 

( 12) 

and 

( 13) 

VI. Comparison with Loop Voltage on Axis 



Before proceeding to examine the sensitivity of L and A to the 

assumed model, it is instructive to digress to comment on the relation 

between the loop voltage defined by Eq. (3) and the voltage ( Vo ) that 

would be measured by a loop placed on the plasma axis: 

where in the cylindrical approximation the poloidal flux �p is 

.p = 2.Ro J: Bp dr 

Vo can be written in a form analogous to Eq. (7): 

where 

and 

v - L'dI /dt - A'V � P 8 

L' 

A' 
a�p 

a�t Ip=const 

(14) 

(15) 

(16) 

(17) 

(18) 

The comparison of L' from Eq. (17) and L from Eq. (8) as predicted by 

the polynomial function model is shown in Fig. 2, and the comparison of 

A' from Eq. (18) and A from Eq. (9) as predicted by the polynomial 

model is shown in Fig. 3. 

The loop voltage on axis calculated from Eq. (16) can be combined 
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with a model of the toroidal current profile to calculate the 

resistivity on axis from which the axis conductivity temperature can be 

derived. With an independent measure of the temperature on axis, say, 

from Thomson scattering, the axis value of the effective ionic charge 

Zeff can be deduced. 

VII. Sensitivity to Profiles 

Although the polynomial function model gives reasonable agreement 

with experiment, it is not perfect, especially during the rapid 

relaxation events commonly referred to as "sawteeth" or "flux jumps, "  

during which the excursion in F-e space tends to be orthogonal to the 

F-e trajectory that the plasma follows on a slower time scale. A 

typical example of such behavior in MST is shown in Fig. 4. In order 

to allow for departures from a unique trajectory in F-e space, it is 

necessary to consider a family of profiles characterized by at least 

two parameters, the variation of which can be mapped into the region of 

F-e space accessed by experiment. 

law, 

The calculation proceeds in the usual way, starting with Ampere's 

v x B (19) 

with the current density l given by the equilibrium condition, 
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l = II I + B x Vp I B2 (20) 

which can be combined into a single differential equation for B: 

(21) 

Eq. (21) is solved numerically in the axisymmetric, cylindrical 

approximation with a parabolic pressure profile, 

p (22) 

In such a case Eq. (21) breaks down into two, coupled, first order 

differential equations for the toroidal and poloidal fields: 

(23) 

and 

(24) 

where 

B (25) 

and 

(26) 
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is the plasma beta on axis, and A is an arbitrary function of r. Eqs. 

(23) and (24) have been solved for various values of A(r) and 8. 

A case which has been often used, and with some experimental 

justification, is the so-called modified Bessel function model (MBFM) 

with 8=0 in which A is taken to be constant (AO) for ria < b and 

linearly decreasing to zero at ria = 1. Thus AO and b become the two 

parameters whose variation can be mapped into F-8 space as shown in 

Fig. 5. The b=1 limit represents the Taylor Bessel function model 

(BFM). The numerical result can be fit reasonably well to a function 

of the form 

(27) 

To calculate the loop voltage, we return to the basic definition 

given in Eq. (3) in which the energy U plays an important role. For 

the MBFM, U is a function of three variables in the calculation, Bto' 

AO and b which are mapped into F-8 space and displayed as normalized 

contours of constant U in Fig. (6). An important feature of Fig. (6) 

is that in the region of interest the energy depends primarily on 8 and 

only weakly on F for a given 8. Thus the choice of expressing the 

inductance given by Eq. (8) as a function of e rather than F in Eq. 

( 12) was serendipitous. 
ill 

Stated differently, the plasma inductance, 

when expressed as a function of e is not sensitively dependent on the 

shape of the A profile, and thus the value derived from the polynomial 

function model is probably as good a representation as any. 
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Similarly, the coupling coefficient given by Eq. (9) has a term 

involving au/a�t at constant Ip and is thus primarily a function of 9. 

However, the second term on the right of Eq. (9) is exactly RoF/a9. In 

the polynomial function model, F is given in terms of 9 approximately 

by 

(28) 

and thus it is possible to express this term as a function of 9 alone. 

However, it is not necessary to do so since F is an easily measured 

quantity in the experiment. Rather than recalculate the PFM result, 

one can simply replace the value predicted therefrom with the 

following: 

(29) 

The correction term is obviously zero if F follows the form of Eq. (28) 

but allows for some departure from the PFM result. Note that there is 

a singularity in the correction term at 9;0, and so if F is not 

precisely 1.0 at 9;0, the correction will diverge. Thus it is probably 

best to apply the correction only above some value of 9 such as 9;1 at 

which A=O in the PFM or perhaps only for F<O. For the worst case in 

Fig. 4 (9;1.9), the correction amounts to about 50%. 

The extent to which the above results are altered by finite beta 

was tested by repeating the calculation with 8=10% on axis, 
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corresponding to Bp - 30-50% for F<O, where Bp is defined by 

(30) 

This value is somewhat higher than typically observed in RFP's and thus 

presumably brackets the interesting range of parameters. The resulting 

F-S curves are shown in Fig. 7, and the contours of constant energy are 

shown in Fig. 8. The results are qualitatively similar to the B=O 

case, and, in fact, the constant energy contours are even less 

sensitive to variations in F at a given S. Many other A-profiles have 

been examined with similar results. 

VIII. An Improved Formalism 

If the plasma is permitted to move arbitrarily in F-S space rather 

than follow a unique trajectory, a correct solution requires that the 

problem be reformulated to allow the energy U to be a function of three 

variables (Ip' �t' and It) rather than two (Ip and �t). 

case, the generalization of Eq. (7) is 

where 

V - L"dI /dt - A"V - M"dI /dt 
$ p S t  

au 
L" 

In such a 

(32) 
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and 

au 
A" (33) 

and 

au 
M" (34) 

Ip aIt 

Although Eqs. (32) and (33) look identical to Eqs. (8) and (9), they 

are very different in that the partial derivatives are taken holding 

two things constant rather than one. Thus the values of L" and A" 

above are different from and should not be confused with the L and A 

used previously. Furthermore, Eq. (34) defines a new quantity Mil which 

we will call the mutual inductance since it has dimensions of 

inductance and involves a coupling between the toroidal and poloidal-

field circuits. From Eq. (28), the following relations which are valid 

for the PFM can be obtained: 

(35) 

and 

Normalized values for U, L", A" and M" for the MBFM with 6-0 have 

been calculated numerically. Since each quantity is a function of two 

variables ( F and 8), no attempt has been made to plot the results, but 

a table of numerical values is included in Fig. 9. The functional 

dependence is complicated, but a bi-linear expansion about a typical 
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operating point of F=-O. 2  and 9=1. 6 gives 

L"/�ORo • 2. 69 + 1. 2F - 2. 0  

aA"/R 7.5 - 6.39 - 3.3F o 

M"/�oa • 2. 29 + 1 .3F - 3. 1 

(37) 

(38) 

(39) 

Expressions of this type would be useful for calculating the loop 

voltage variation during a sawtooth oscillation under the assumption 

that the trajectory in F-9 space is a consequence of a profile rather 

than a pressure readjustment. Note that to apply Eq. (31) it is 

necessary to generate a suitably smoothed signal proportional to 

IX. A Comment on Minimum Energy States 

Before concluding, it is worth pointing out a curious and perhaps 

significant feature of the variation of energy with F and 9. Magnetic 

field profiles in an RFP are generally assumed to relax to a shape that 

represents a state of minimum total energy subject to whatever 

constraints are present. In the Taylor (BFM) model, the constraints 

are taken to be toroidal flux �t and total magnetic helicity K. In an 

experiment, one instead generally relies on the external circuit to 

constrain the toroidal flux and the plasma current Ip (so called "flat­

topped operation"). In such a case, the helicity would be expected to 
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readjust on a shorter resistive time scale. Constraining Ip and �t is 

equivalent to specifying 6 and letting the plasma relax to whatever 

value of F minimizes the energy. If one further constrains the profile 

to be given by the modified Bessel function model (with adjustable b) 

and S=O, inspection of Fig. 6 shows that for F)O, the minimum energy 

state (at constant 6) is the BFM (b=1), but for F<O (RFP-like), the 

minimum energy state lies to the right of the BFM curve as seen in 

experiment. Fig. 10 shows the locus of minimum energy states for this 

case along with a similar calculation in which helicity is conserved 

rather than plasma current (reproducing the BFM result). Thus for a 

given 6, the MBFM is a lower energy state than the BFM in an RFP. 

Adding finite beta to the MBFM does not qualitatively change the 

result as shown in Fig. 11 for a parabolic pressure profile with a beta 

on axis of 10%. From similar plots with various beta, the minimum 

energy state of the MBFM for constant Ip and F<O is quite accurately 

given by 

F ... 1/(1+3.8S) - 6/(1.2+6S) (40) 

A large number of other lambda profiles have been examined with 

similar results. Even a case in which lambda is a delta function of 

position, A Ao6(b-r/a), in which AO and b are varied to access 

different regions of F-6 space gives a similar result. In the latter 

case, the minimum energy state for 6�1 has b=1 and follows the curve 

F (41) 
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but for 8>1, the minimum energy requires b<1 and occurs for F slightly 

negative. Thus it is possible that the experimentally observed F-8 

curve is a consequence of the constraints imposed externally by the 

circuit that drives the RFP rather than by any considerations of 

helicity conservation. 

forthcoming paper. 

This possibility will be examined further in a 

X. Conclusions 

A number of subtleties have been examined concerning the way in 

which loop voltage is measured and used in RFP's in general and in MST 

in particular. Upon close scrutiny, the polynomial function model 

presently in use on MST is surprisingly good. Several small 

corrections could be made, but their implementation poses special 

problems and thus is probably not worth the effort at present. If we 

continue to reduce the loop voltage in MST, the corrections will become 

more important, and we may have to reconsider. 
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