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Introduction to Time-Series Analysis

. Rowlands and J. C. Sprott

In most experimental situations it is usually only possible to
measure a limited number of variables for a limited interval of time.
Furthermore, these variables may not be directly related to the
variables that control the dynamics (the time evolution of the system).
For example in the experimental study of fluid flows it is usually only
the velocity of the fluid at a few particular points in space which is
measured as a function of time. However, to obtain a complete
understanding of the fluid flow, it is necessary to know the velocity
at all points in the fluid.

An obvious question is what information can one glean from
restricted information such as a single time series? This of course is
not a new question, and the problem has received much attention in the

past.

A method which has been found, in the right circumstance, to be
very powerful is where the time series is expressed in terms of its
Fourier modes. If the number of modes is found to be small then the
dynamics of the system can be expressed in terms of the dynamics of
these modes. Mathematically this means that the time series for a
quantity T(t) may be expressed in the form

M
T(t) = T Agelemt (1)
m=1

with M a small integer. The power spectrum P(w) = |[ T(t)elwt at|? is
then just a series of delta functions at w = wy (M taking all integer
values between 1 and M) of strength |Ap|2. In fact the way this method
of representation is found to be approprlate is to use T(t) to evaluate
the power spectrum and see if it is of the form of a finite number of
peaks. In practice the presence of external noise broadens the delta-
functions, but, if the noise is not too strong, the peaks in P(w) can
still be recognized and hence Ay and wp calculated. The above
expression for T(t) then gives a smoothed or noise-free representation
of the original data.

An important question remains of how best to represent these
smoothed data? One way is to use the phase plane where T(t) for
es;nple is plotted against dT/dt. This latter quantity is readily
obtained from Eq.(1) but not from the original noisy data. For M =1
(a single mode) such a plot would reveal a simple closed loop, while
for M = mg the (my+l)-dimensional phase-space portrait whose ordinates
are T(t), dr/dt, ... dMo/dtMo, would also be a simple mg~dimensional
loop or torus (depend.ing on whether the frequencies are harmonically
related or not). Incidentally, this type of analysis illustrates how a
single time-varying quantlty T(t) can give multi-dimensional
information. However, in a significant number of experimental
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situations which fall under the umbrella of turbulence, the power
spectrum P(w) does not have very much structure. That is, it falls off
monotonically with w, and Fourier peaks are poorly resolved or not
present. In such a case an expression in the form of Eq. (1) is not
appropriate, although a Fourier transform integral rather than a sum
does convey some information.

An altermative is to use the method of singular value
decamposition.1l/2  This method, originally used in statistics to study
linear problems, has more recently been applied, under a number of
disguises, to inherently nonlinear physical problems. The method
replaces the expansion of T(t) in Fourier modes by an expansion in
terms of another complete set of functions. Importantly this set is
obtained from a numerical analysis of the data and is not imposed, as
in the Fourier series representation, from outside. Thus instead of
BEq. (1) we write

o0
T(t) = = Pp(t) (2)
=1

where the yp's form a complete orthogonal set of functions. By analogy
with P(w) we define Py = ([ T(t)yp(t)dt)2, which is just Py = [ yp2dt,
and this latter form we can interpret as the probability of the system
being in the state yp. Thus again by analogy with Fourier modes one
can anticipate there are situations where T(t) can be adequately
represented by just a few of the yp's. Then just as a few peaks in the
power spectrum indicates the possibility of an expansion in a small
number of Fourier modes, the existence of a few dominant Pp's indicates
the possibility of a useful expansion in a small number of the y's.

Singular value decomposition is a method for the generation of an
orthogonal set of functions. The essentials of the method are as
follows. The data are assumed to be known at a finite number, N, of
equally spaced intervals of time, At. Writing T, = T(t=nAt) we assume
Th is known for n =1, ... N. From these data we construct a set of N
vectors (actually it is N - M vectors, but in practice N >> M, and so
we will simply refer to N vectors) V; of dimension M defined such that

Vo = {Te, Tp+1s - Tmrg-1} (3)
We also construct the auto-correlation function defined by

N
C(n) = = Ty To4n (4)
=1

The choice of At and M is important, but a discussion is left to later.

Using the values of C(n) one constructs the symmetric M X M
correlation Matrix M with elements My, = C(|¢-p|). This matrix has M
eigenvalues which we denote by iy ang corresponding eigenfunctions gp.

Using these, one defines the functions yp(t) such that
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¥m(t=nAt) = op-Vn (5)

These functions are orthogonal and normalized such that

1 N
- 2 yp2(2at) =2 (6)
N 2=1

and so Pp = )\p, and hence Ay is a measure of the importance of the mode
Ym in the expansion of T(t). Thus by analogy with the usual procedure
of expanding in a finite number of Fourier modes, we now expand in a
finite number, d, say, of the y's and select those y's which correspond
to the d largest values of Xp. Thus as an approximation to the
original data T(t) we write

d
Tp(t) = Z ¥m(t) (7)
m=1

Alternatively, Ay may be considered as a measure of the time the
function T(t) 1lies 1in a direction parallel to yp, in which case the
choice of Yy as defined above corresponds to maximizing this time.

Besides giving the best set of orthogonal functions, the above
method, as does the Fourier series expansion, involves some smoothing
of the original data T(t). This is of course desirable since most
experimental data have a significant noisy camponent. A purely random
time series leads to a correlation matrix M which is diagonal (C(n) =
Cobn,o0) and whose eigenvalues are all equal to C,. Thus for any other
data, the existence of eigenvalues, )y, which are greater than Cg
reveal the presence of structure in the data. By limiting the
summation in Bq. (7) to such eigenvalues one automatically removes a
substantial amount of the noise, so that Tp(t) is a smoothed version of
T(t). Furthermore, since the correlation function as defined by Eq.
(4) 1is essentially a time average of the data, same of the noise will
be averaged away. The singular value decomposition method is identical
to the Karhussen-Loéve expansion and as such was originally suggested
by Lumley to study turbulence.3:4

A very powerful way of identifying any underlying structure in the
original data T(t) is to ewmmine the d-dimensional phase space
constructed using the functions y1, ¥2, ... ¥3. Such plots reveal the
topological structure of the solution. Importantly this is the same
structure as one would obtain by considering a phase space constructed
using the vectors V as defined above, that is, the original data.
However, topological details in this latter phase-space plot could be
masked due to the presence of noise in the V's. The fact that the
topological structure is conserved in going from a V-based phase space
to a y-based phase space is simply due to the fact that, by
construction, the 4's are just linear combinations of the V's. An
additional feature of singular value decomposition is that a two-
dimensional plot of y, versus ¥, amounts to a rotation of the attractor
in such a way that it is viewed from its broadest side, and thus its
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structure is most readily apparent.

The Fourier mode method is useful when the number of modes needed
for a description of the problem is small. The system can then be
described in terms of a small number of weakly coupled oscillators, a
picture which wusually corresponds to one's physical intuition. One
would of course like an analogous situation to exist when the system is
described in terms of a small mumber of the y's. However, this is not
so, and at present it seems that a better understanding can best be
achieved by studying some of the results of dynamical systems theory.

There is now much evidence from the theory of dynamical systems
that apparently complicated time behavior can result from the solution
of relatively simple differential or difference equations. For
example, the logistic equation®

is known to have chaotic (pseudo-random) solutions for certain values
of the parameter A. The Lorenz equations>/6

dx/dt = o(y—x)
dy/dt =rx -y - xz (9)
dz/dt = xy - bz

where 0, r and b are constants, also have chaotic solutions.
Furthermore, these latter solutions are associated with the existence
of a strange attractor in the %, y, z phase space.

Though neither of these equations has been shown to be a good
model for a real physical system in the sense that the variables have a
direct physical interpretation, the fact that such simple equations
show complicated time behavior leads one to hope that complicated time
behavior, as found in the real world for example in turbulence, may be
modeled by simple equations. For this reason it seems reasonable to
expect that egquations for the time evolution of the yp's, as defined
above, may be simple. Given that the yy's retain the topological
features of the original data T(t), these simple equations, if they
exist, would also retain these features. Thus such equations would
model many of the important aspects of T(t).

From a physical point of view one can interpret the yp's for 1 < m
< d as caoherent structures, and then the expansion of T(t) as expressed
by Bg. (7) is an expansion in terms of these structures. This is to be
contrasted with the expansion as given by Bq. (1) which is in terms of
Fourier modes. The coherent modes could themselves be Fourier modes,
but then nothing has been achieved, but more generally they could be
complicated 1linear combinations of such modes. In this way of
thinking, the x, y and z of the Lorenz equations would be identified as
relating to these distinct coherent structures, not to the amplitude of
simple sinusoidal modes as assumed in the original deviation.
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Given the nature of their evaluation it is convenient to assume
the equations of motion for the y's are of the form

In(t+at) = Fp(@n(t)) (10)

where the bar over the y¥'s is used to denote a value satisfying these
model equations and Fy, is a nonlinear function of all the Jypn's from n =
1 to d. Guided by the argument that simple nonlinear functions are
sufficient to produce chaotic behavior we assume a form

d d d
Fn(®n) = amo + = anglq + = buede + = Snqepbe¥p (11)
$1 q’e qlz Ip

that is a cubic polynomial characterized by the constants a, b and c.
These constants are determined by obtaining, in the least squares
sense, the best fit of the solutions of the equations of motion (10) to
the known form for the yp's. That is, the quantities Jy, where

1 N

Jn == T {¥n((s+l)at) - Fp(¥n(sat)}2 (12)
N s=1

are minimized with respect to the coefficients a, b and c. Camputer
software that carries out the procedure described above as well as many
other tests for chaotic time series is available.?

Since the yp's are normalized to the eigenvalues )\p, it is natural
to impose the condition given by Bg. (6) on the solution of the
equations of motion, namely Bq. (10). This is readily achieved by
introducing Lagrange multipliers » and minimizing

1 N

Im=Jn + 1 |= T ¥n?((s+1)At) - ip| (13)
N s=1

In this particular case, this procedure is equivalent to minimizing the
Jn's and multiplying all the coefficients by a common factor to ensure
the normalization. Such a normalization procedure is useful in that it
removes damping introduced by numerical procedures (such as the finite
data-sample rate) and not present in the original data. In principle
other constraints, such as symmetry requirements, may be imposed on the
assumed form of the functions Fy,.

The original data T(t) are given for a finite time interval only
(N is finite). However, once the equations of motion for the yp's are
known they can be solved for all time. Then using BEq. (7) we have an
estimate Tp(t), for T(t) for all time. Thus in principle we have an
extrapolation scheme. However, this scheme should be used with
caution. If the underlying system is chaotic then due to sensitivity
to initial conditions we only expect Tp(t) to be a good representation
of T(t) for a short period of time after t = NAt. On the other hand
since the 7¥'s and the model Bgs. (10) capture the topology of the
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original data, these model equations should provide good topological
information. Thus for esample a major obstacle in the calculation of
fractal information is that there are usually not sufficient data, that
is, N is too small.8 However, one can now use the model equations to
generate as many data points as required and use them to calculate the
various measures of the attractor's dimension. This whole procedure
raises an interesting mathematical point about the errors in the
various measures as obtained directly and as obtained using the model
equations.

It is much simpler from a computational point of view to calculate
Lyapunov exponents® from equations than directly from data. The above
procedure of first obtaining equations thus leads to a significant
simplification.

There is another way in which the above methods can be used to
extrapolate experimental data. Time series are usually known for the
same experiment but where some adjustable parameter or parameters can
be changed. For simplicity, consider the case where the data T(t)
depend on a single parameter u and the T(t)'s are known for a number of
different values of u.

The methods outlined above can be applied to the data for each
value of u. This will result in values of ¥, A, a, b and ¢ which also
depend on u. There are good reasons to believe that the dependence of
the a's, b's and c 's on u is simple. In this case by using the
experimental data, namely T(t) for a range of values of i, and a least
squares fitting procedure these constants can be expressed as simple
polynomial functions of u.

An extrapolation scheme based on extrapolation of these
polynomials in u can then be used to study the changes in the topology
of the solution T(t), for example, the onset of chaos or the
disappearance of chaos and the emergence of periodic behavior. This
extrapolation scheme is insensitive to initial conditions and does not
have the associated restrictions of the direct extrapolation procedure
outlined above.

The reasons for believing that the dependence of the coefficients
such as a on u is simple comes from a study of equations such as (8)
and (9). As is well known, the solution to Bq. (8) can go through a
complicated period-doubling sequence leading to chaos simply by
changing the parameter A. But )\ corresponds to u, and the coefficients
a and b are just linearly proportional to u. The same behavior is
found for the Iorenz equations. The solutions of these equations show
a whole range of behavior as the quantity r is allowed to vary. In the
Iandau theory of phase transformations the phase transformation arises
because a parameter, namely, the temperature as measured relative to
the critical temperature, goes linearly through zero. Thus a simple
linear variation in a parameter in the equations is sufficient to cause
a dramatic change (catastrophe) in the state of the system.
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In the above method there are two quantities, namely M the order
of the correlation matrix and d the number of significant
eigenfunctions retained. These are to be considered as parameters of
the method which can be adjusted to obtain the best fit between the
real system under investigation through the data T(t) and the solution
of the model Egs. (10). Since we envisage applying the method to
situations where the auto—correlation function shows little structure,
we hope the complicated time variation can be attributed to the
presence of a strange attractor. Then the parameters M and 4 are
chosen to represent best the topological features of the attractor.

To illustrate some of the above techniques we have applied the
methods to a few selected model situations. In the first case we
consider the time series generated by iterating the logistic Hq. (8).
Then with T(t=nA) = T we simply identify Tp with xp.

An almost trivial procedure is to consider the case where the
correlation matrix is of order one. The eigenfunction must then be xp.
If the data are then fitted to an equation of the form of Eg. (10), one
recovers the logistic equation with coefficients accurate to within the
round-off errors. The result of this procedure with A = 4 is plotted
in Fig. 1(a). Importantly this applies to all types of solution of Eg.
(8), not Jjust those which are chaotic. For thecaseof a 2 X 2
correlation matrix there are two eigenfunctions. A phase-space plot as
shown in Fig. 1(b) reveals a single closed loop which is just a
distortion of the loop in a phase space generated by xn and xp-1, for
in this case the two eigenfunctions are just different 1linear
combinations of xn and Xp-1. For this case, x = 1 + y¥2. One can then
proceed to get two coupled equations to describe the time evolution of
the y's. These are not readily recognizable as related to the logistic
equation, kut they can be factored and reduced to this equation. The
factorization is to be expected since the phase-space trajectory is a
single loop. The same considerations apply if one takes higher-order
correlation matrices. The simple loop structure in the phase space
still remains if one considers higher-order correlation matrices (M>2)
lut restricts the number of eigenfunctions used in the model equations
(10) to be two.

A slightly less trivial example is the Hénon map®:10

¥pt1 = 1 = axp? + yn (14)

Yn+1 = bxn

which is a two-dimensional generalization of the logistic egquation.
The data values obtained by iterating BEgs. (14) witha =1.4 and b =
0.3 are shown in Fig. 2(a). This case requires a 2 X 2 correlation
matrix and produces values of ¥; and ¥, whose phase-space plot as shown
in Fig. 2(b) is topologically equivalent to the original attractor. In
this case, x = y1 + ¥2. The equations produced by a least squares fit
using BEgs. (11) and (12) have a solution that fits the original data to
within round-off errors and is indistinguishable from Fig. 2(b).



8

The Hénon map provides an opportunity to illustrate how the
analysis method discriminates against noise in the data. A time series
of 2300 values of x was generated from successive iterates of Eq. (14),
to which was added normally distributed deviates with zero mean and
standard deviation of 0.1. The resulting input data as shown in Fig.
3(a) is a noisy version of Fig. 2(a). Two eigenfunctions were used,
and the resulting model equations were solved to generate a new time
series given by x = 1 + ¥, whose values are plotted in Fig. 3(b). The
noise is totally removed, and the map is indistinguishable from the
Hénon map. This reduction of noise is a result of forcing the data to
fit a relatively simple functional form involving only two equations
whose solution must therefore be an attractor with at most dimension
two.

The next case considered is where the time series was generated by
solving the Lorenz equations (9) and identifying T(t) with x(t). The
neglect of the information contained in the solutions y(t) and z(t)
mirrors the experimental situation where only a limited amount of
information is available. The traditional values of 0 = 10, r = 28 and
b = 8/3 have been chosen so as to lead to a strange attractor. The
time series with At = 0.05 has been analyzed, and it is found that for
a range of M values, three, or sometimes four, of the eigenvalues are
significantly larger than the others. Thus we assume that a reasonable
approximation of the results can be allowed by restricting the analysis
to just three eigenfunctions and values, that is, d = 3. 1In Fig. 4(a)
we plot the phase space defined by the functions x,, Xp-1 and xp-.
This reveals the topological nature of the strange attractor. A phase
space constructed from y7(t), ¥2(t) and y3(t) is shown in Fig. 4(b).
For this case x(t) = 0.813 yq(t) - 1.338 ¥5(t) - 1.507 y3(t). The
topological features are the same, and the general shape is seen to be
a distortion of Fig. 4(a). This phase plot is insensitive to the value
of M, and in fact a value of M as low as three is sufficient to capture
the general features.

Using these three y's, a model set of dynamical equations of the
form of BEg. (10) was derived. These equations were then solved to
obtain the time variation of the model y's, and these were used to
construct a new phase-space plot. This is shown in Fig. 4(c) and is
seen to be in good agreement with the phase space portrait using the
Y's as shown in Fig. 4(b).

A similar set of phase-space portraits for the Rossler equationsll
with At = 0.2 is shown in Fig. 5. This set of equations has the form

dx/dt = -(y+2)
dy/dt = x + ay (15)
dz/dt = B + z(x—y)
with a = B = 1/5 and v = 5.7 so as to generate a strange attractor. As

with the Iorenz attractor, three eigenfunctions suffice, and x(t) =
1.33 y1(t) - 0.035 yy(t) + 1.567 y3(t). Camparison of the phase
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portraits in Fig. 5 shows that the model equations capture the
essential features of the strange attractor.

The results for the Lorenz and Rossler equations have been
obtained using the value of x, at only 1000 distinct points. The
phase-space portraits for the model equations are shown for times
longer than a thousand time intervals, illustrating the stability of
the equations.

However, the coefficients in the model equations and hence the
solution of these equations depend sensitively on the order of the
correlation matrix M. For small values of M, though the value of T(t)
(that is x) generated using BEg. (7) with d = 3 is in good agreement
(over the time where x(t) is given) with the original data, the
associated model equations do not reconstruct the strange attractor.
Usually after a short interval of time the solutions tend to become
infinite or attract to a fixed point or limit cycle. There appears to
be a optimal choice of M for the reconstruction of the attractor. This
value has been found empirically to be associated with (a) the maximum
difference between A3 and the higher eigenvalues and (b) that the
elements C(n) used in the correlation matrices span the region where
the major variation of C occurs. For the results presented in the case
of the Lorenz equation, a value of 9 has been found to be appropriate,
while for the Rossler equation, because of the longer correlation time,
it was found necessary to make M = 16.

This whole procedure has been carried out for the Lorenz equations
for a range of r values between 25 and 90, and in particular the
coefficients a, b and c appearing in By. (11) were evaluated as a
function of r. The variation with r of the coefficients of the largest
nine terms is shown in Fig. 6(a) from which it is seen that this
variation is reasonably smooth. From the symmetry of the Lorenz
equations, the terms involving even powers of y (ago and byyy) are
negligibly small. Using the least squares method, the coefficients are
readily fitted to simple polynomials in r. Such a cubic fit is shown
in Fig. 6(b).

One now has a set of dynamical equations of the form given by Egs.
(10) and (11) where the coefficients a, b and c are known in the form
of simple polynomials in the parameter r. It is on this set of
equations that one can base an interpolation or extrapolation
procedure. By taking r values other than the ones measured, and
solving the model equations, the behavior of the system can e
predicted. This can be in the form of the relevant phase plot or by
using By. (7) to form x(t).

The phase portrait for r = 57 obtained directly from the values of
the y's is shown in Fig. 7(a), while the form predicted using the above
procedure is shown in Fig. 7(b). The agreement is quite good.
Extrapolation outside the range of measured values should be applied
with caution, however.
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