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Intrcxluction to Time-Series Analysis 

G. Rowlands and J. C. Sprott 

In most experimental situations it is usually only possible to 
:measure a limite::i rnnnber of variables for a limite::i interval of time. 
Furthenrore, these variables may not be directly relate::i to the 
variables that control the dynamics (the time evolution of the system). 
For example in the experimental study of fluid flows it is usually only 
the velocity of the fluid at a few particular points in space which is 
:measured as a function of time. However, to obtain a carrplete 
understarxting of the fluid flow, it is necessary to know the velocity 
at all points in the fluid. 

An obvious question is what infonnation can one glean from 
restricted infonnation such as a single time series? '!his of course is 
not a new question, and the problem has received much attention in the 
past. 

A method which has been found, in the right circumstance, to be 
very powerful is where the time series is expressed in tenns of its 
Fourier modes. If the rnnnber of modes is found to be small then the 
dynamics of the system can be expressed in tenns of the dynamics of 
these modes. Mathematically this means that the time series for a 
quantity T(t) may be expressed in the form 

M 
T(t) = I: Ame�t (1) 

m=1 

with M a small integer. '!he power spectrurn P (w ) = 1 J T (t) eiwt dt 12 is 
then just a series of delta functions at w = Wm (m taking all integer 
values between 1 and M) of strength. 1 Am 12. In fact the way this method 
of representation is found to be appropriate is to use T(t) to evaluate 
the power spectrurn and see if it is of the form of a finite number of 
peaks . In practice the presence of external noise broadens the delta­
functions, rut, if the noise is not too strong, the peaks in P (w) can 
still be recognized and hence Am and Wm calculate::i. '!he above 
expression for T(t) then gives a smoothed or noise-free representation 
of the original data. 

An important question remains of how best to represent these 
SIOOOth.ed data? One way is to use the phase plane where T(t) for 
example is plotte::i against dT/dt. '!his latter quantity is readily 
obtained from Fq. (1) rut not from the original noisy data. For M = 1 
(a single mode) such a plot would reveal a sinple closed loop, while 
for M = ll10 the (ll1o+1) -dimensional phase-space portrait whose ordinates 
are T(t), dT/dt, • • •  dTffio/dt111o, would also be a sinple 1llo-dimensional 
loop or torus (depending on whether the frequencies are hannonically 
related or not). Incidentally, this type of analysis illustrates how a 
single time-varying quantity T(t) can give multi-dimensional 
infonnation. However, in a significant number of experimental 
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situations which fall under the umbrella of turhllence, the po;.ver 
spectnnn pew) does not have very much structure. '!hat is, it falls off 
monotonically with w, and Fourier peaks are poorly resolved or not 
present. In such a case an expression in the fonn of Fq. (1) is not 
appropriate, although a Fourier transfonn integral rather than a sum 
does convey same infonnation. 

An alternative is to use the method of singular value 
decolrposition.1, 2 '!his method, originally used in statistics to study 
linear problems, has more recently been applied, under a nmnber of 
disguises, to inherently nonlinear physical problems. '!he :method 
replaces the expansion of T(t) in Fourier modes by an expansion in 
terms of another corcplete set of functions. Inp:>rta:ntly this set is 
obtained from a numerical analysis of the data and is not imposed, as 

in the Fourier series representation, from outside. 'lhus instead of 
Fq. (1) we write 

00 

T(t) = I: lPm(t) 
m=1 

(2) 

where the lPm' s fonn a corcplete orthogonal set of functions. By analogy 
with pew) we define Pm = (f T(t)lPm(t)dt)2, which is just Pm = f lPm2dt, 
and this latter fonn we can interpret as the probability of the system 
beirg in the state lPm' 'lhus again by analogy with Fourier modes one 
can anticipate there are situations where T(t) can be adequately 
represented by just a few of the lPm' s. '!hen just as a few peaks in the 
po;.ver spectnnn indicates the possibility of an expansion in a small 
number of Fourier modes, the existence of a few dominant Pm's indicates 
the possibility of a useful expansion in a small number of the l/J's. 

Singular value decorcposition is a method for the generation of an 
orthogonal set of functions. '!he essentials of the method are as 
follows. '!he data are assumed to be known at a finite nmnber, N, of 
equally spaced intervals of time, D.t. Writing Tn = T(t===nt.t) we assume 

Tn is known for n = 1, . .
• 

N. From these data we construct a set of N 
vectors (actually it is N - M vectors, rut in practice N » M, and so 

we will siIrply refer to N vectors) y� of dimension M defined such that 

y� = {T�, T�+l' 
• • •  'IMH-1} 

We also construct the auto-correlation function defined by 

N 
C(n) = I: T� T�+n �=1 

(3) 

(4) 

'!he choice of D. t and M is important, rut a discussion is left to later. 

Using the values of C (n) one constructs the syrmnetric M X M 
correlation Matrix M with elements M�p = C( I �-pl). '!his matrix has M 
eigenvalues which we denote by Am ana corresponding eigenfunctions �. 
Using these, one defines the functions lPm(t) such that 
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l/Im(t==nAt) = Qrn'Yn 

'1hese functions are orthogonal am nonnalized such that 

1 N 
- � l/Im2(�at) = Am 

N �=1 

(5) 

(6) 

am so Pm = Am' am hence Am is a measure of the i.np:>rtance of the mode 
l/Im in the expansion of T(t) • '!bus by analogy with the usual procedure 
of exparrling in a finite mnnber of Fourier modes , we 'f'DIl expan::l in a 
finite rn.nnber , d, say, of the .,p I S am select those .,p I S which. correspond 
to the d largest values of Am' '!bus as an approximation to the 
original data T(t) we write 

d 
'!bet) = � l/Im(t) 

m=1 
(7) 

Alternatively, Am may be oonsidered as a measure of the time the 
function T(t) lies in a direction parallel to l/Im, in which. case the 
choice of l/Im as defined above corresponds to maximizirg this time. 

Besides givirg the best set of orthogonal functions, the above 
method, as does the Fourier series expansion, involves sane smoothing 
of the original data T(t). '!his is of course desirable since most 
experimental data have a significant noisy CX1l1pOIleIlt . A purely raman 
time series leads to a correlation matrix M which. is diagonal (C(n) = 
Co8n 0) am whose eigenvalues are all equal to Co. 'Ihus for any other 
data: the existence of eigenvalues, Am, which. are greater than Co 
reveal the presence of structure in the data. By limitirg the 
sunmation in Ek;I. (7) to such eigenvalues one autanatically removes a 
substantial amount of the noise, so that '!bet) is a SJ.OOOthed version of 
T(t). F\Jrthent¥:)re, since the correlation function as defined by Ek;I. 
(4) is essentially a time average of the data , same of the noise will 

be averaged away. '!he singular value dec::anp:>sition method is identical 
to the Karhussen-IOOve expansion am as such. was originally suggested 
by Ilnnley to study turl:W.ence. 3,4 

A very powerful way of identifyirg any urrlerlyirg structure in the 
original data T(t) is to examine the d-dimensional phase space 
oonstructed usirg the functions .,pit .,p2, • • •  lPd' Such plots reveal the 
topological structure of the solution. Inp:>:rt:antly this is the same 
structure as one would obtain by oonsiderirg a phase space constructed 
usirg the vectors Y as defined above, that is, the original data. 
However, topological details in this latter phase-space plot could be 
masked due to the presence of noise in the yls. '!he fact that the 
topological structure is conserved in goirg fran a y-based phase space 
to a .,p-based phase space is simply due to the fact that, by 
construction, the lP IS are just linear canbinations of the yls. An 
additional feature of singular value dec::anp:>sition is that a two­
dimensional plot of .,p2 versus .,pl cnoounts to a rotation of the attractor 
in such a way that it is viewed fran its broadest side, am thus its 
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structure is most readily apparent . 

'Ihe Fourier mode methcxi is useful when the number of modes needed 
for a description of the problem is small. 'Ihe system can then be 
described in terms of a small number of weakly coupled oscillators, a 
picture which usually corresponds to one's physical intuition. One 
would of course like an analogous situation to exist when the system is 
described in terms of a small number of the l/J' s. How'ever, this is not 
so, am at present it seems that a better un:ierstanding can best be 
achieved by studying sane of the results of dynamical systems theory. 

'!here is now much evidence from the theory of dynamical systems 
that apparently complicated time behavior can result fram the solution 
of relatively simple differential or difference equations. For 
exanple, the logistic equation5 

(8) 

is known to have chaotic (pseudo-rand.om) solutions for certain values 
of the parameter A. '!he Lorenz equations5, 6 

dx/dt = a(y-x) 

dy/dt = rx - y - xz 

dz/dt = xy - bz 

(9) 

where a, r and. b are oonstants , also have chaotic solutions. 
Furtherm:>re, these latter solutions are associated with the existence 
of a strange attractor in the x, y, z phase space. 

'Ihough neither of these equations has been shown to be a gocx:l 
:model for a real physical system in the sense that the variables have a 
direct physical interpretation, the fact that such simple equations 
show complicated time behavior leads one to hope that complicated time 
behavior, as foun:i in the real world for example in turbulence, may be 
:modeled by simple equations. For this reason it seems reasonable to 
expect that equations for the time evolution of the tPm's, as defined 
above , may be simple. Given that the tPm's retain the topological 
features of the original data T(t) , these simple equations, if they 
exist, would also retain these features. 'Ihus such equations would 
model many of the important aspects of T(t). 

From a physical point of view one can interpret the tPm' s for 1 :::; m 
:::; d as coherent structures, and. then the expansion of T(t) as expressed 
by Eq. (7) is an expansion in terms of these structures. 'Ibis is to be 
contrasted with the expansion as given by Eq. (1) which is in tenus of 
Fourier modes. 'Ihe coherent :modes could themselves be Fourier modes, 
but then nothing has been achieved, but more generally they could be 
complicated linear combinations of such modes. In this way of 
thinking, the x, y and. z of the Lorenz equations would be identified as 

relating to these distinct coherent structures, not to the amplitude of 
simple sinusoidal modes as assmned in the original deviation. 
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Given the nature of their evaluation it is convenient to assume 

the equations of motion for the 1/J' s are of the fonn 

�(t+t.t) = FmC1n(t» (10) 

where the bar over the 1/J' s is used to denote a value satisfying these 
model equations and Fm is a nonlinear function of all the lPn'S from n = 
1 to d. Guided by the argument that simple nonlinear functions are 
sufficient to produce chaotic behavior we assume a fonn 

d d d 
Fm(;n) = Clmo + � 8miPq + � bnq�l!Jcjfi� + � "nq�ricjli�l$p (11) 

q=1 q,� q,�,p 

that is a cubic polynomial characterized by the constants a, b and c. 
These constants are detennined by obtaining, in the least squares 
sense, the best fit of the solutions of the equations of motion (10) to 
the known fonn for the 1/Jm's. That is, the quantities Jm, where 

1 N 
Jm = - � {1/Jm( (s+l)t.t) - Fm(1/Jn(Sb.t)}2 

N s=1 
(12) 

are minimized with respect to the coefficients a, b and c. Conputer 
software that carries out the procedure described above as well as many 
other tests for chaotic time series is available. 7 

Since the 1/Jm' s are nonnalized to the eigenvalues Am, it is natural 
to impose the condition given by Eq. (6) on the solution of the 
equations of motion, namely Eq. (10) • 'lhis is readily achieved by 
introducing Lagrange multipliers TI and minimizing 

1 N 
1m = Jm + TIm 1- � 1/Jm2 «s+l)t.t) - Am i 

N s=1 
(13) 

In this particular case, this procedure is equivalent to minimizing the 
Jm's and multiplying all the coefficients by a C01lU'IDIl factor to ensure 
the nonnalization. SUch a normalization procedure is useful in that it 
removes dan'ping introduced by numerical procedures (such as the finite 
data-sample rate) and not present in the original data. In principle 
other constraints, such as symmetry requirements, may be imposed on the 
assumed fonn of the functions Fm. 

'!he original data T(t) are given for a finite tiIoo interval only 
(N is finite). However, once the equations of motion for the 1/Jm' s are 
known they can be solved for all time. '!hen using Eq. (7) we have an 
estimate '!b(t), for T(t) for all time. '!hus in principle we have an 
extrapolation scheme . However, this scheme should be used with 
caution. If the underlying system is chaotic then due to sensitivity 
to initial conditions we only expect '!bet) to be a good representation 
of T(t) for a short period of time after t = Nt.t. On the other hand 
since the 1's and the model Eqs. (10) capture the topology of the 
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original data, these model equations should provide good topological 
infonnation. Thus for exanple a major obstacle in the calculation of 
fractal infonnation is that there are usually not sufficient data, that 
is, N is too small. 8 However, one can now use the model equations to 
generate as many data points as required and use them. to calculate the 
various measures of the attractor' s dimension. '1hl.s whole procedure 
raises an interesting mathematical point about the errors in the 
various measures as obtained directly and as obtained using the model 
equations. 

It is TIUlch s�ler from a corrputational point of view to calculate 
Lyapunov exponents9 from equations than directly from data. The above 
procedure of first obtaining equations thus leads to a significant 
siIrplification. 

There is another way in which the above methods can be used to 
extrapolate experimental data. Time series are usually known for the 
same experiment b.rt where sane adjustable parameter or parameters can 
be chan:Jed. For siIrplicity, consider the case where the data T (t) 
depend on a single parameter 1.£ and the T (t) 's are known for a number of 
different values of 1.£. 

The methods outlined above can be applied to the data for each 
value of 1.£. This will result in values of l/J, >.., a, b and c which also 
depend on 1.£. There are good reasons to believe that the dependence of 
the a's, b' s and c 's on 1.£ is simple. In this case by using the 
experimental data, namely T (t) for a range of values of 1.£, and a least 
squares fitting procedure these constants can be expressed as simple 
polynomial functions of 1.£. 

An extrapolation scheme based on extrapolation of these 
polynomials in J.I. can then be used to study the changes in the topology 
of the solution T (t) , for exanple, the onset of chaos or the 
disappearance of chaos and the emergence of periodic behavior. '!his 
extrapolation scheme is insensitive to initial conditions and does not 
have the associated restrictions of the direct extrapolation procedure 
outlined above. 

The reasons for believing that the dependence of the coefficients 
such as a on 1.£ is simple comes from a study of equations such as (8) 
and (9). As is well known, the solution to Fq. (8) can go through a 
COI1'plicated period-doubling sequence leading to chaos simply by 
chan:Jing the parameter >... But >.. corresponjs to 1.£, and the coefficients 
a and b are just linearly proportional to 1.£. The same behavior is 
found for the IDrenz equations. The solutions of these equations show 
a whole range of behavior as the quantity r is allowed to vary. In the 
landau theory of phase transfonnations the phase transfonnation arises 
because a parameter , namely, the terrpe"rature as measured relative to 
the critical teIrperature, goes linearly through zero. Thus a simple 
linear variation in a parameter in the equations is sufficient to cause 
a dramatic chan:Je (catastrophe) in the state of the system . 
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In the above method there are two quantities, namely M the order 

of the correlation matrix and d the m.nnber of significant 
eigenfunctions retained. 'Ihese are to be considered as parameters of 
the method which can be adjusted to obtain the best fit between the 
real system under investigation through the data T (t) and the solution 
of the model Eqs. (10). since we envisage applying the method to 
situations where the auto-correlation function shO\NS little structure, 
we hope the complicated time variation can be attrihlted to the 
presence of a strange attractor. Then the parameters M and d are 
chosen to represent best the topological features of the attractor. 

To illustrate some of the above techniques we have applied the 
methods to a few selected model situations. In the first case we 
consider the time series generated by iterating the logistic Fq. (8) • 

Then with T(t==.n6) = Tn we sin"ply identify Tn with xn. 

An almost trivial procedure is to consider the case where the 
correlation matrix is of order one . The eigenfunction nrust then be xn. 
If the data are then fitted to an equation of the form of Fq. (10), one 
recovers the logistic equation with coefficients accurate to within the 
rotmd-off errors. The result of this procedure with A = 4 is plotted 
in Fig. l(a). Inqx>rtantly this applies to all types of solution of Fq. 
(8), not just those which are chaotic. For the case of a 2 X 2 
correlation matrix there are two eigenfunctions. A phase-space plot as 
shown in Fig. 1(b) reveals a single closed loop which is just a 
distortion of the loop in a phase space generated by xn and xn-lt for 
in this case the two eigenfunctions are just different linear 
combinations of xn and xn-1. For this case, x = lP1 + 1/;2. One can then 
proceed to get two coupled equations to describe the time evolution of 
the lP's. These are not readily recognizable as related to the logistic 
equation, rut they can be factored and reduced to this equation. The 
factorization is to be expected since the phase-space trajectory is a 
single loop. The same considerations apply if one takes higher-order 
correlation matrices. The sin"ple loop structure in the phase space 
still remains if one considers higher-order correlation matrices (M>2) 
rut restricts the number of eigenfunctions used in the model equations 
(10) to be two. 

A slightly less trivial example is the Henon mapS, 10 

xn+1 = 1 - axn2 + Yn 

Yn+1 = bxn 

(14) 

which is a two-dimensional generalization of the logistic equation. 
The data values obtained by iterating Fqs. (14) with a = 1.4 and b = 
0.3 are shown in Fig. 2 (a). This case requires a 2 X 2 correlation 
matrix and produces values of lP1 and lP2 whose phase-space plot as shown 
in Fig. 2 (b) is topologically equivalent to the original attractor _ In 
this case, x = lP1 + lP2- The equations produced by a least squares fit 
using Eqs. (11) and (12) have a solution that fits the original data to 
within round-off errors and is indistin;Juishable from Fig_ 2 (b) _ 
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The Henon map provides an opportunity to illustrate how the 

analysis method discriminates against noise in the data. A time series 
of 2300 values of x was generated from successive iterates of Eq. (14), 
to which was added normally distriJ::llted deviates with zero mean and 
standard deviation of 0. 1. The resulting input data as shown in Fig. 
3 (a) is a noisy version of Fig. 2 (a) . 'lWo eigenfunctions were used, 

and the resulting mcxiel equations were solved to generate a new time 
series given by x = lIi1 + l/J2 whose values are plotted in Fig. 3 (b) • The 
noise is totally removed, and the map is irxlistinguishable from the 
Henan map. This reduction of noise is a result of forcing the data to 
fit a relatively sinple functional form involving only two equations 
whose solution nnlSt therefore be an attractor with at most dimension 
two . 

'!he next case considered is where the time series was generated by 
solving the lorenz equations (9) and identifying T (t) with x (t). '!he 
neglect of the information contained in the solutions yet) and z (t) 
mirrors the experimental situation where only a limited amount of 
information is available. The traditional values of (J = 10, r = 28 and 
b = 8/3 have been chosen so as to lead to a strange attractor. The 
time series with Llt = 0. 05 has been analyzed, and it is found that for 
a range of M values, three, or sometimes four, of the eigenvalues are 
significantly larger than the others. Thus we assume that a reasonable 
approxilnation of the results can be allowed by restricting the analysis 
to just three eigenfunctions and values, that is, d = 3. In Fig. 4 (a) 
we plot the phase space defined by the functions xn, xn-1 and xn-2. 
This reveals the topological nature of the strange attractor . A phase 
space constructed from VJ1 (t), VJ2 (t) and VJ3 (t) is shown in Fig. 4 (b) • 

For this case x (t) = 0. 813 VJ1 (t) - 1. 338 VJ2 (t) - 1. 507 VJ3 (t). '!he 
topological features are the same, and the general shape is seen to be 
a distortion of Fig. 4 (a). This phase plot is insensitive to the value 
of M, and in fact a value of M as low as three is sufficient to capture 
the general features. 

Using these three VJ' s, a model set of dynamical equations of the 
fom. of Eq. (10) was derived. These equations were then solved to 
obtain the time variation of the model VJ' s, and these were used to 
construct a new phase-space plot. This is shown in Fig. 4 (c) and is 
seen to be in good agreement with the phase space portrait using the 
VJ 's as shown in Fig. 4 (b) • 

A similar set of phase-space portraits for the Rossler equations11 

with Llt = 0. 2 is shown in Fig. 5. This set of equations has the fom. 

dx/dt = - (y+z) 

dy/dt = x + CY.Y 

dz/dt = B + z (x-y) 

(15) 

with a = B = 1/5 and 'Y = 5. 7 so as to generate a strange attractor. As 
with the Lorenz attractor, three eigenfunctions suffice, and x (t) = 
1. 33 VJ1 (t) - 0. 035 VJ2 (t) + 1. 567 �3 (t). Comparison of the phase 
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portraits in Fig. 5 shows that the model equations capture the 
essential features of the strange attractor. 

'!he results for the IDrenz and Rossler equations have been 
obtained using the value of xn at only 1000 distinct points. '!he 
phase-space portraits for the model equations are shown for times 
longer than a thousand time intervals, illustrating the stability of 
the equations. 

However, the coefficients in the :model equations and hence the 
solution of these equations depend sensitively on the order of the 
correlation matrix M. For small values of M, though the value of T(t) 
(that is x) generated using Fq. (7) with d = 3 is in good agreement 
(over the time where x(t) is given) with the original data, the 
associated model equations do not reconstruct the strange attractor. 
Usually after a short interval of time the solutions tend to become 
infinite or attract to a fixed point or limit cycle. There appears to 
be a optimal choice of M for the reconstruction of the attractor. '!his 
value has been found enpirically to be associated with (a) the maximum 
difference between A3 and the higher eigenvalues and (b) that the 
elements C(n) used in the correlation matrices span the region where 
the major variation of C occurs . For the results presented in the case 
of the IDrenz equation, a value of 9 has been found to be appropriate, 
while for the Rossler equation, because of the longer correlation time, 
it was found necessary to make M = 16. 

This whole procedure has been carried out for the IDrenz equations 
for a range of r values between 25 and 90, and in particular the 
coefficients a, b and c appearing in Eq. (11) were evaluated as a 
function of r. The variation with r of the coefficients of the largest 
nine tenus is shown in Fig. 6(a) from which it is seen that this 
variation is reasonably smooth . From the symmetry of the IDrenz 
equations, the terns involving even powers of l/J (a:mo and �.e ) are 
negligibly small. Using the least squares method, the coefficlents are 
readily fitted to sinple polynomials in r. SUch a cubic fit is shown 
in Fig. 6(b). 

One now has a set of dynamical equations of the fonn given by Eqs. 
(10) and (11) where the coefficients a, b and c are known in the form 
of sinple polynomials in the parameter r. It is on this set of 
equations that one can base an interpolation or extrapolation 
procedure. By taking r values other than the ones measured, and 
solving the model equations, the behavior of the system can be 
predicted. This can be in the fonn of the relevant phase plot or by 
using Eq. (7) to form x(t) . 

The phase portrait for r = 5 7 obtained directly from the values of 
the l/J's is shown in Fig. 7(a) , while the fonn predicted using the above 
procedure is shown in Fig. 7(b). '!he agreement is quite good. 
Extrapolation outside the range of measured values should be applied 
with caution, however. 
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