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INTRODUCTION 
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As an alternative to injecting plasma into the octupole from an ex-

terna1 gun, plasma can be produced within the field by filling the toroidal 

cavity with rf energy at microwave f requencies .
l Preliminary tests indicate 

that this is a very simple and effective means of producing a well-behaved ,. 
cold ion plasma with easily controlled properties. 

The goal of this paper is to estimate theoretically the 

1) spatial distribution 

2) density 

3) electron temperature, and 

4) decay rate of the plasma which is produced for various 

values of 

a. microwave frequency 

b. power level 

c. pulse length 

d. magnetic field strength, and 

e. background gas pressure. 

Because of the complicated geometry, however, exact calculations are 

generally too difficult and it will be necessary to resort to approxima-

tions and statistical arguments. In some cases the theoretical predictions 

will be compared with experimental results. 
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SPATIAL DISTRIBUTION 

The rf power density required to ionize a volume of gas in the 

absence of any magnetic field can be estimated by equating the kinetic 

energy which an electron gains in a period of oscillation to the ioniza-

tion energy of the gas: 

1 
"2' fiXo 

2 
= eV. 1 

where Xo = eE
o

/m w. Then the energy density is 

1 , 2 2 m  
U = 2 €o

E
o = EOW e V

i' 

For a cavity with a Q of order unity the power density is given approx� 

imately by wU or 

(1) 

For hydrogen, V
i = 15.8 eV and the power dens ity required is 

For microwave frequencies of 3 GHz (s band) and 10 GHz (x band) the required 

power densities are .54 and 20 kW/cm3 respectively. Since the volume of the 

,octupole is 2.5 x l0
5

cm3, a total power of at least 135 MW would be required 

to produce a plasma in the absence of a magnetic field. 

With a magnetic field, electrons can reach the ionization energy at 

much lower rf power levels provided the power is applied at the electron 

cyclotron frequency: 

W "'.:! 
ce m (2) 
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or 2. 8 MHz/gauss. For the power levels presently being contemplated 

(� 1 MW), we can therefore rest assured that plasma will be produced only 

in those regions of the magnetic field where wce = w. Hence plasma is 

produced along surfaces of constant B in the octupole. A plot of lines 

of constant B in a cross sectional plane of the octupole is given in 

figure 1. B is normalized so that its value at the outside wall in the 

midplane is 1 .  At the normal operating field (2kV on the multipole cap-

acitor bank) the numbers are approximately in units of kilogauss. 

Resonance occurs at -1 kG for s band and - 3.5 kG for x band. Since 

B <7 kG everywhere in the field, only microwave frequencies less than 

20 GHz can be used to produce plasma. 

Of course plasma is not produced uniformly along a field line be-

cause the perpendicular component of the rf electric field varies along 

a field line. One would like to calculate the electric field distribu -

tion everywhere in the toroid. However, because of the complicated geometry 

and high mode number of the cavity, such a calculation is too difficult to 

perform. The mode number is given approximately by 

N ;; (3) 

or -2000 for s band and -74, 000 for x band. Furthermore, the mode pattern 

changes drastically when the plasma density changes and when probes are 

moved. 

Because of the complexity of the mode pattern it is possible to take 

a statistical approach and assume that these variations average out when 
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integrated over an entire flux surface and that the amount of plasma 

produced on a flux surface is proportional to the fraction of the 

Consider the intersection of the flux lines � and � + d� with the 

constant IBI lines B and B + dB: 

� + d� ---___ .-.------- B + dB 
� ---��� 

The area of the cross hatched region is given by 

dA = d�dB 

Iv�x'i7BI 

The vo lume is 

27TRd�dB dv = Iv�x'i7BI 

where R is the distance from the major axis to the point of intersection 

of B and �. In general, there will be several intersections over which 

a sum must be taken 0 The fraction of the flux surface which resonates 

is 

(4) 

where Vi (�) = � ex: � #- is a function of considerable importance 

in stability calculations. V'(�) has been calculated for the octupole 

and is shown in figure 2. 
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If we assume that the density along a �-line becomes constant 

in a time short compared with any drifts or instabilities which lead 

to transport of plasma across the field, we expect the initial den­

sity distribution in � space to be proportional to the expression in 

equation (4): 

R .. (5) 
VI I V�xVB I 

Two features of the density distribution are particularly worth 

noting: 

1) The density should be zero on the separatrix since V'4�there. 

2) The density should be very high wherever a �-line is tangential 

to the resonant constant B line since V�xvB = 0 there. 

Computer obtained plots of n(�) from equation (5) for various 

values of B (and hence w) are shown in figures 3 - 7. The singulari­

ties have been removed by drawing a smooth curve which ignores peaks 

less than -i of a � unit in width. Note that for low values of B, 

the plasma is deposited about equally on each side of the separatrix, 

but as the frequency increases, a greater proportion of the plasma is 

deposited near the hoops. 

An experimentally obtained distribution is compared in figure 9 

with the theoretically predicted distribution for f = 3250 MHz (1.16 kG). 

The agreement is good. Note particularly the minimum on the separatrix, 

the peaks at � = -3 and + 1.5, apd the steep density gradient between 
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ljJ = -3 and the hoops. Between ljJ = +3 and the wall, the curves dis-

agree? presumably because the plasma is unstable there and is rapidly 

lost to the walls. 

We have seen that it should be possible to produce plasma with 

quite a wide range of spatial distributions by varying the microwave 

frequency (or more conveniently by varying B). Note that since the 
gyroradii of the electrons are quite small compared with the ion 
gyroradii from the gun ,  it is not necessary to run the magnetic field 

high to get long plasma lifetimes, It is possible to produce plasma 

only between the separatrix and the hoops, or to produce it only around 

the inside hoops. A distribution peaked on the separatrix, however, is 

not obtainable this way. 

In general a distribution peaked off the separatrix would not be 

expected to be stable. Con$equently, many of the distributions which can 

be produced would not persist for any appreciable time. It is possible, 

however, for the magnetic field to support a density distribution which 

is peaked off the separatrix provided the density gradient n' = � is 

not too large. The condition for interchange stability including the 

finite pressure term is given by 2,3, 

dE 
= piyvl 

dljJ 

= pyvv 

+ P'Y 

d 
Cij" 

(\1") 2 

VI 

'Y 
R,n (pV' ) < O. (6) 

The maximum stable inverted density gradient is obtained by setting 

dE � = 0 or 

pV,
'Y 

= const, 
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For a plasma without temperature gradients, 

n(l/J) ex: V'-Y (7) 

A plot of equation (7) for Y = � and for Y = 2 is shown in 

figure 10. 

The choice between the two values of Y depends upon whether the 

plasma should be considered two or three dimensional. The plasma is 

three dimensional wherever the average length of a field line between 

regions of good and bad curvature is short compared with the distance 

a particle travels during a half period of a fluctuation: 

v !/, < 2f (8) 

For a 10 eV electron, v = 2 x 108 em/sec and !/, is typically 10 em. 

Hence for fluctuations below -10 MHz the plasma behaves like a three 

dimensional gas with y = 5/3. 

From figure 10, therefore, it is apparent that most of the density 

distributions of figures 3 - 7 are unstable. It is experimentally ob­

served that such distributions quickly readjust themselves until they 

satisfy the stability condition of equation (6).1 
In some cases 

the distribution overshoots the critical slope given by equation (7). 

The density distribution in figure 9, for example, becomes nearly 

flat after a very short time with only a slight peak at l/J = -2. 

After the initial collapse, various density distributions can be 

obtained. Figure 11 shows a sample of the distributions which have been 

obtained experimentally for various frequencies and magnetic field strengths. 

Note that they all satisfy the stability condition of figure 10. All of these 

distributions decay more or less uniformly as the plasma decays. 
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DENSITY 

The maximum plasma density which can be obtained from a micro­

wave pulse of power P and duration T is obtained from energy conserva-

tion: 

dP U = T-::m' = n (eV. + kT. + kT ) uv 1 1 e (8) 

where Vi is the ionization potential, Ti 
is the ion temperature and 

Te is the electron temperature. For a zero temperature hydrogen 

plasma, 

-3 9 
n (em ) = 1. 6  x 10 P(kW) T (�sec) 

In one experimental case, a magnetron input power of about 5 kW 

for 90 �sec produced a kTe = 10 eV plasma with a density of about 

9 -3 10 em 500 �sec after breakdown. From the measured decay rate of den-

sity we can extrapolate back to get a density of �2 x 10
9 

cm
-3 

at 

t = O. These numbers allow us to say that in this case about .25% of the 

dc input power to the magnetron actually appears as energy in the trapped 

plasma. That is, 

'l\ M 1\. P 1\ T ;:::t. 0. 25% 

where 1\ M is the efficiency of the magnetron, � p is the fraction of the 

rf energy leaving the magnetron which is absorbed by the plasma and 1\. T 

is the trapping efficiency of the produced plasma. This efficiency may 

seem low but it can be compared with the conical pinch gun which produces 

a 50 eV plasma (Ti -40 eV, Te 
-10 eV) of about the same density at the 

expense of 1450 joules of dc stored capacitor energy, giving an efficiency 
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-6 
of -2. 5  x 10 . Hence from a power standpoint, the microwave plasma 

is produced about 1000 times more efficiently than the gun plasma. 

There are two additional effects which tend to limit the plasma 

density which can be obtained. When the density reaches the point 

where the electron plasma frequency is comparable to the microwave 

frequency, the rf does not penetrate the plasma. This occurs at 

or 

w = Ine
2 

Pe €om (9) 

f (Hz) = 9000 �(cm
-3

) • 

Henc� the iimiting density is -10" cm
-3 

for s band and -1012 
cm

-3 

for x band microwaves. 

A second consideration is the number of neutral molecules avail-

able for ionization. The density of a gas is related to its pressure by 

p = nkT. (10) 

\b 
n (cm

-3
) = 3.2 x lO

ir 
p (Torr). 

Hence a pressure of at least 1.7 x 10
-7 

Torr for s band or 1. 7 x 10
-6 

Torr for x band is required to make full use of the microwave energy 

available. However, to avoid very long microwave pulses, considerably 

higher pressures are necessary. There is a limit to how high a back­

ground pressure can be tolerated. The lifetime of the gun plasma is 

seriously affected for P � 10
-4 

Torr. The cold ion microwave plasma 

should not be so seriously affected but for practical reasons high pressures 
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are undesirable. Furthermore, at high background pressures, the break­

down can be inhibited. 

Consider a model in which a single zero energy electron is present 

in a hydrogen gas of density n. If the electron is in the resonance re­

gion, its velocity will increase linearly as the microwaves are applied: 

e -
v = 

m Et = at. (ll) 

The acceleration a is a constant related to the power density of micro­

waves by 

a = � 13 = � 1_1_ ! 
m m e: w uv 

(12) 
o 

Equation (12) is plotted in figure 12 for the octupole for the two fre­

quencies of interest. The acceleration is typically 10
15 cm/sec2. 

If an electron is to reach the ionization energy � ffiV
o

2
, the accel­

eration must be fast enough that the electron does not elastically scat-

ter off a hydrogen molecule in a time TO = vola. The scattering time 's 

is given by 

1 
's 

= 
no v 

s 

The scattering cross section
4 

as 
is nearly constant for low energies 

'and is approximately 1. 2 x 10-15 
em

2 • Hence the breakdown condition is 

n 1 
a < --=2 °svo 

Since Vo 
= 2. 4 x 108 cm/sec, 

(13) 

13 -3 n must be less than about 1. 4 x 10 em , 

-5 
or p < 4 x 10 Torr. In practice, this requirement is probably somewhat 
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too stringent because the decrease in the ionization time compensates 

for the losses through scattering. Breakdown seems to be most efficient 

at P � 10-4 Torr. 

Now we are in a position to consider the microwaves pulse length 

required to raise the density of electrons in a gas up to the point 

where wPe = w. We will assume that the background gas pressure is 

high enough to supply the required electrons but not so high that elas­

tic scattering becomes important (Le • .  : 1. 7 x 10-7 � P � 4 x lO�S Torr). 

Again consider anelectron starting from rest uniformly accelerated with 

acceleration a. The probability that such an electron will undergo 

an ionizing collision in a time dt is 

dP = no(v) v dt. 

In one collision time Lit the probability of a collision is 1 

fore 

There-

1 
1 - - = 

e 

L· f 1. no(v) v dt 
o 

(14) 

where v = at and 0 (v) is given by the standard formS: 

where 00 = 9.4 x 10-16 cm2 for electrons on hydrogen. Inserting this cross 

section into equation (14) gives 

!!.= a 

1.12L. 2 
0.061 [2(tn 1.) + Lo 

1.12L. -1 
(Un 1. + 1) � 1. 2S] • (IS) 

Lo 
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Equation (15) gives the ionization time Ti in terms of the 

density n. A graph of equation (15) is given in figure 13. Figure 12 

and figure 13 together allow one to predict the ionization time in 

terms of the microwave frequency and power level and the background 

gas density. As an example, consider a 100 kW s band rf source. This 

provides an acceleration of -1015 cm/sec2. At a pressure of 2 x 10�5 
Torr, 

aTi z 2 x 10
9 

or Ti � 2 �sec. 

The number of electrons after a time t can be obtained from T· by 
1 

assuming that the neutral density does not change appreciably during 

the time t. Then 

tho 
N = e :1 

• 

Or in terms of N, 

t = T· in N = T· in (nV) 1 1 

(16) 

(17) 

If, for example, one wishes to build up a density of 10
10 

cm
-3 

in the 

toroid (V = 2. 5 x 10
5 

'cm
3

) , the time re quired would be -70 �sec using 

the previous numerical example. These predictions agree amazingly well 

wi th what is observed experimentally. 

If sufficiently long microwave pulses cannot be obtained, high den-

sities can still be achieved by introducing some preionization by inject­

ing a low density gun plasma or by producing electrons from a hot fila­

ment. The hot filament has the additional advantage that electrons can 

be put only on certain flux surfaces and hence the plasma could presumably 

be produced with essentially a delta function distribution in � space . 
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In practice, it has been possible to build up electron densities of 

106 -3 . h I · h f·l If h ·  1 - em ln t e octupo e USlllg a ot 1 ament, t e mlcrowave pu se 

is applied in the presence of a background density n of electrons, the o 
density at time t is 

n = n e t/� o 

and the time required to achieve a density n is 

t = T· Q,n!!. • 1 n o 

(18) 

(19) 

In the previous example, a 1010 em-3 plasma could be produced in 

"":10 llsec, if one started with 106 electrons/em3. This is a considerable 

improvement over the 70 llsec required with no preionization. If there is 

no preionization off the field line where one wishes to produce the delta 

function distribution, the density should be only -6 x 10-2 em-3. This 

treatment is clearly rather idealized and it is doubtful that such a 

sharply peaked function could be experimentally produced. However, a 

distribution which even remotely approximated this ideal would be of tre-

mendous value in studying the diffusion process, 

In practice, it is usually not possible to build up the density 

everywhere at once. Plasma is produced only in the resonance zones and 

then must collapse by instability to fill the volume. If the microwave 

pulse is long enough to build the density up to the value where wPe = W 

but not so long that appreciable spatial redistribution takes place, the 

final density that one obtains is proportional to the fraction of the 

cavi ty in which resonance occurs. This fraction can be calculated by 



integrating equation (4) over � space: 

dv _ 

y--
21T dB J R 

V I \7�X\7B I 
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d� (20) 

The quantity � in equation (20) has been calculated by comput­

er by integrating between � = -5 and � = +5. The result is shown in 

figure 14. Since the plasma between � = +3 and � = +5 is flute unstable and 

is rapidly lost, a more realistic estimate of dv/dB.is obtained by integrating 

from � = -5 to � = +3. This function is also shown in figure 14. Note 

that the production efficiency is high for f = :nIz (s band) and f = 10 GHz 

(x band) and that it falls to zero at f = 0 (zero frequency) and at f :; 20 GHz. 

Qualitative agreement with this prediction has been obtained by keeping the 

rf frequency constant and varying the magnetic field. 
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ELECTRON TEMPERATURE 

We now turn our attention to the more difficult problem of esti­

mating the kinetic energy of the electrons which have been cyclotron heated 

by the rf pulse. We will first estimate the electron energy at a time cor-

responding to the end of the microwave pulse and then conclude by examining 

the way in which the electron temperature decays after the rf is turned 

off. 

The simplest possible model would ignore collisions and energy loss 

mechanisms and would require that the electron be continously accelerated 

with acceleration a given by equation (12) for a time T equal to the dura-

tion of the microwave pulse. This approximation would lead to an energy 

1 2 2 E=Zm a  'T .  (21) 

For a typical acceleration of 1015 cm/secZ and a pulse length of 10 �sec, 

we obtain E = 30 keY. 

A more realistic treatment would include the fact that the magnetie 

field is non-uniform and hence when the particle energy increases, the 

gyro radius increases and the gyro frequency gets out of tune with the driving 

force. The equation of motion of an electron in a non-uniform magnetic 

field is 

�. � mr = e r x B(�) + Fo cos wt 

where Fo is the driving force (=e Eo). If we assume that the driving force 

is perpendicular to B, we can separate the equation of motion into components: 



mX = ey'B + F cos wt 
o 

my = eXB. 

Now assume that B can be expanded in the form 

17 

Substituting this form of B into the above equations and e1tminating y 

leads to 

2 3 2 (VB) 2 Fo wt x + w X + W X = - cos o '2 0 B rn (22) 

x3 V2B where terms of order 3 have been neglected. Equation (22) is the 
B 

equation of a non-linear oscillator with an unsymmetric restoring force. 

It can be solved 6 by assuming a solution of the form 

x = pcos wt + p o 

and adjusting p and P
o 

in such a way that equation (22) is satisfied. If 

higher harmonic terms (cos 2 wt) are ignored, the solution reduces to the 

simple form: 

2 2 
+ (w - W ) P - a = 0 o 

eE 
where a is the acceleration C rn

o) given by equation (12). 

(23) 

Equation (23) allows us to determine the gyroradius p and hence the 

energy of a particle at a point in the field where the cyclotron frequency 

is woo Because higher harmonic terms have been neglected, equation (23) is 

valid only for w2 - wo
2 « wo

2. In particular, equation (23) allows us to 

calculate the gyro radius of a particle which is exactly in resonance 



18 

Its value is 

p (24) 

Consider as an example an electron that happens to be at the point where 

the 1 KG B surface intersects the midplane in the octupole atw= 0.5 in 

figure 1. Such an electron would be trapped in a mirror field and would 

gain energy until its gyro radius was equal to the value in equation (24). 

At this point in the field � z 5 em .  Consider an s-band rf source with 
- 1015 em! 2 vB a - sec • The resulting gyro radius would be 0.32 mm. The 

small gyro radius justifies neglecting terms of order x3V2B/B2. 

In the non-relativistic limit the particle energy is related to the 

gyro radius by 

E = 1:. m w 
2 2 

2 0 p 

and so the energy of a particle in the resonance zone will be 

B 2 2 
E = 0.29 m [awo (w) ] "3" (25) 

For the previous numerical example, equation (25) predicts an electron 

energy of only �100 eVe 

Note that equation (25) is a steady state solution and hence would not 

be valid for very short pulses. If the pulse is so short that the energy 

calculated from equation (21) is less than that calculated from equation (25) , 

an equilibrium will not be reached and the electron energy will be given by 



equation (21) . Equation (25) should be valid for 

0.76 [ 
T > -- a w a 0 

or about 0.5 �sec in the present example. 
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(26) 

Equation (25) illustrates the futility of trying to produce a high 

temperature plasma by microwave heating in the toroidal octupole. Since 

the electron energy varies inversely with the i power of VB, and since the 

toroidal octupole was purposely designed to have a deep magnetic well, elec­

tron cyclotron heating is exceedingly difficult. Furthermore, the situation 

is further aggrevated by the fact that a large field gradient leads to nar-

row resonance bands and hence the fraction of the volume in which heating 

takes place is quite small. This situation is in direct contrast to 

magnetic mirror geometries where the field gradients are small and electron 

cyclotron heating is extremely effective.7 

It might be hoped that cyclotron heating would take place at those 

points in the field where 13 is parallel to vB (Le. where a constant B line 

intersects a W line at right angles in f�gure 1) since the particle could 

have a very large gyro radius without getting out of tune with the driving 

field. Unfortunately a particle in such a field is accelerated parallel to 

the field with an acceleration 

# 1 2 vB Vz = 2" v 1. 13 (27) 

� 
where v� is the velocity perpendicular to B given by VJ- = at. Equation 

(27) can be integrated twice to give 



1 2 vB t4
. z =Na 13 
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A particle which has drifted a distance z is out of resonance by an 

amount 

vB /J;)= w z -o B 

and its amplitude will wow with a period T = 2�1 � .  The particle will 

cease to gain energy from the electric field when II & is about equal to the 

duration of the pulse. Combining the above equations with �= � gives 

1 
5" ( 28) 

Taking a = 1015 em/sec2 and � = 5 em as in the previous case, we obtain for 
vB 

s band microwaves the result that the particle gains energy only for a time 

-8 t = 3.2 x 10 sec, In this time the electron will have acquired an energy 

of E � 0. 3 eVe Therefore heating is especially ineffective where � is paral­

lel to vB. 

The preceding discussion assumed that the electron did not scatter off 

other particles during the time in which the acceleration was taking place. 

Equation (26) showed that equilibrium was reached in times of the order of 

0.5 �sec. Hence equation (25) should be valid only when 

0.76 [ ( B)2] l 
T

S > -a- awo vB 3 (29) 

where T
S 

is given by 

1 
nosv 
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In the range above a few eV, CJ 
s 

is proportional to l/v and 's 

is a function only of the background gas pressure:
4 

-11) 
T (sec) - 2.5 x 10 (30) s - p(torr) 

Hence scattering becomes important only at pressures above about 5 x 10
-5 

torr. At higher pressures we can probably assume that the electron accel­

erates uniformly between successive scatterings and that its effective 

energy is reduced to zero after a time 's since its velocity becomes uncor­

related with the driving electric field in that time. The probability that 

a particle will have velocity v in dv is then 

dt P(v) dv = -- • 
's 

The mean square velocity can then be calculated: 

v -Z f s 
2 1 's 2 v = 

0 
v P(v) dv = -- f v (t) dt. 

's 0 

Substituting v = at gives 

The electron energy corresponding to this velocity is 

1 -Z E = "2 mv 

or, numerically, 

E(eV) == 

2 

2.5 x 10
-39 

( a ) . 
p 

(31) 
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Hence it is extremely difficult to obtain high temperature plasmas 

in the presence of high background pressures by electron cyclotron heating. 

Since gas breakdown requires high pressures as previously shown, high tem­

perature plasmas are most easily obtained by using a low background pressure 

and some pre ionization. 

The only place in the octupole field which is free of gradients in all 

directions is the zero field axis. Howe ver, it is impossible to cyclotron 

heat plasma at a point where the field vanishes. With a superimposed toroidal 

(B ) field, however, there would be a point in the field where vB = O. 
e 

If the Be field were unifornl, this point would be on the minor axis. 

However, the B
e 

field in the toroidal octupole has the form' 

Al A 

Be 
= R e 

where R is distance to the toroid's major axis. Near the minor axis, the 

octupole field increases like r
3 

and in the midplane is given by 

A2 3 A 

B = n- (R - R ) rp cp ,K  0 

where Ro = 43. 2 em .  The total magnetic field in the midplane has a magni tude 

B = 

The requirement that vB = 0 leads to the fifth order equation, 

I Al 
2 

= 1' ( -- ) 
A

2 

(32) 

(33) 

Note that R depends only on the ratio A
l

/A2 
(i.e.: only on the relative 
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strength of the two fields at some reference point). In our experiment 

this ratio can be varied from zero up to some maximum value. The values 

of B¢, Be (for maximum Al/A2), and B in the midplane of the octupole are 

plotted in figure 15. Note that vB = 0 at a point about 5 cm from the 

minor axis toward the outside wall. The value of B at this point is about 

335 gauss at the normal operating amplitude, but it can be adjusted to 

any value between zero and 335 gauss. To resonate in this region would re-

quire a microwave source with a frequency of 940 MHz or les s. 

To estimate the energy to which a particle at that point in the field 

would be raised, we perform a calculation similar to the one which yielded 

equation (25). Assume a B field of the form 

B (x) = B +! x
2 

v
2 B 

o 2 

with V
2

B = const. Substituting this form of B into the equation of motion 

gives 

2 2 
2 F

o 3 
( 

V
B

B ) 
3 x + w x +-4w x = o 0 m 

cos wt. (34) 

This is a standard non-linear equation known in the literature as Duffing's 

equation. It can be solved by a perturbation method
6 

similar to that us ed 

to obtain equation (23). The result is 

A particle on resonance will therefore have a gyro radius 

1 
p = [ l6a 2 (-±-)]3 

9 v B Wo 

(35) 

(36) 



and an energy 

2 
E = 0.73 m [awo (-±-)]3 

v B 
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(37) 

The value of � can be obtain@d by dif�erentiating equation (32) twice 
v B 

and imposing the condition that vB = 0 (e quation (33)). The result is 

(38) 

where the latter approximation is valid for r « R where r = R - R .  In 
o 0 

the case under consideration, Ro 
= 43.2 em and r = S em . If we take 

w/2� = IGHz and a= IdS cm/sec2 we obtain from equation (37) an energy 

of about 200 eVe Hence, even in this case, cyclotron heating would not 

be too effective. 
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DECAY RATE 

In this final section we consider the question of what happens to 

the plasma after the microwave energy is turned off. We expect the 

plasma to be 1) non-Maxwellian, 2) anisotropic ( since all the energy 

has been put into motion perpendicular to B), and 3) unstable (since 

plasma is not produced on the separatrix). The time required for a non­

Maxwellian distribution tothermalize and the time required for any aniso-

tropy to disappear should be about equal to each other and to the e1ectron­
electron collision time. The electron-electron collision time is given by 
Spitzer

8
: 

T ee 

3/2 
= 0.266 T

e 
n !l.n A 

For 10eV electrons, 

Tee = 
4.6 x 1015 

n 

(39) 

For a density of n = 10" cm
-3 

Tee 
= 4.6 j.lsec. Hence the plasma should 

become Maxwellian very quickly after the microwaves are turned off. 

The rate at which the plasma achieves a stable configuration is more 

difficult to estima�e. From the diffusion equation 

nV
D = -Dvn, (40) 

we can express the diffusion velocity v
D 

in terms of the diffusion coefficient D: 

-+ vn 
v =-D-D n '  

If we take for D the collisional diffusion rate, then vD � 1 cm/s ec, and the 
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distribution would not change appreciably for the duration of the experiment 

(- 1 rnsec). A more realistic estimate would assume that D is equal to the 

Bohm diffusion coefficient: 
kT 

D = 
e 

l6eB 
(41) 

MOst experiments in which hydromagnetic instabilities are present (including 

the octupole outside �crit) have diffusion which is close to that given by 

equation (41). 

For 10 eV electrons and a typical magnetic field of 500 gauss, the dif­

fusion velocity is -104 an/sec for nl Vn = 10 em. Hence Bohm diffusion should 

stabilize the density distribution in a time of -1 msec. In practice, how­

ever, the plasma generates potential fluctuations an order of magnitude 

higher than kTe/e and collapses to a stable configuration in SO - 100 �sec.l 

We will not investigate the turbulent period during which the plasma readjusts 
itself, but will consider what happens 
to the density and temperature after the plasma has become Maxwellian, 

and�hieved a stable spatial distribution. 

We first consider hanger loss since we consider this to be the main 

loss mechanism for the gun injected plasma. The continuity equation is 

where the current j to any object in the plasma is given by 
. 1 J = "4 n eVa 

Applying the divergence theorem gives 

jA = <# � . ciS = - f � dV = - eV £f 
v 

(42) 
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Substitution for j gives a differential equation for the density net): 

dn 1- A crt + '4 v (\1) n = 0, 

which has as a solution 

(43) 

n 
Hence we obtain the result that the density/of particles of velocity v 

should decay exponentially with a lifetime � given by 

(44) 

V is the containment volume and A is the area of the hangers in contact 

with the plasma. 

The above treatment has neglected the presence of any magnetic field. 

The magnetic field has two effects: 1) it changes the effective collecting 

area, and 2) it makes the lifetime a function of $: 

� ($) =! � = ! V' ($)/ � 
v v $ 

(45) 

Note particularly that �-+oo on the separatrix since V' ($) -+ 00 there 

and dA/d$ is finite(and approximately constant). 

When the finite gyro radius of the ions is taken into account, the life­

time on the separatrix will no longer be infirite but it should be appreciably 

greater than the lifetime off the separatrix. The fact that this effect is 

not observed
9 

either with the gun plasma or with the microwave plasma 

(which has very small gyroradii) leads to the conclusion that diffusion must 
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play a major role in plasma loss from the separatrix. This fact is not too 

surprising since both Bohm and collisional diffusion rates go to infinity 

when B = O. Since the decay rate seems to be fairly independent of 1jJ 

we will use the lifetime given by equation (44) where 4V/A is an effective 

mean free path to be determined experimentally. 

Taken at its face value, equation (44) gives a lifetime of 15 msec 

for 40 eV ions. The actual decay rate observed with an electrostatic en­

ergy analyzerlO has about 600 �sec. Hence the magnetic field apparently 

plays a large role in determining/�fective mean free path. 

When the electron temperature exceeds the ion temperature as in the 

case of the microwave plasma, ions are collected at a rate fa�ter than that 

given by their thermal velocity.ll In this case, the sheath criterion12 

requires that the ions be collected with an effective velocity of approximately 

v ;./ kTe = 

rn. 
1 

rm: 
2m. 

1 

v • e (46) 

From equation (46) it is easily shown that a zero temperature ion plasma should 

have a lifetime only 2 .;-z- times longer than a 40 eV plasma with the same elec­

tron temperature (10 eV) provided we neglect the effect of the magnetic field 
on the effective hanger collection area. In fact, the microwave plasma appears 
to have a lifetime only about 10 - 20% longer than the gun plasma. 

We will now assume that the mean free path of the electrons A is a con­

stant so that the rate of plasma loss of particles of velocity v is propor­

tior�l to viA. We will further assume that the thermalization time is short 

so that the electron velocity distribution function f(v) never departs 
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significantly from a Maxwellian: 

2 mv
Z 

fey) = 4N v (�) 3/Z 
e - zkT (47) 

rrr ZkT 

Following a derivation by EricksonlO
, we write the total rate of particle 

loss as 

dN J 00 v 2N .17'I?r 
":!"r = - - fey) dv = - - {�-ut 0 A A TIm (48) 

where the temperature T is also time dependent. Similarly the energy 

loss rate is 

dE 00 1 v
3 4NEokT � at == - 10 7 E

o -A 
fey) dv = - ---,-Am ....... - m 

Since the energy is related to the temperature by 

E= t NkT, 

the above two equations can be combined to give 

Substituting this relation into equation (48) gives the solutions' 

T = 

N = 

(1 + .188 V t/A)
2 

o 

(1 + . 188 �o 
t/A)

6 

(49) 

(50) 
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Also of interest is the ion saturation current drawn by a Langmuir 

probe which is proportional to dN jdt or 

I = 10 
(51) 

where Vo is the average electron velocity at t = O. 

These three quantities are plotted in figure 16. The temperature 

decays considerably more slowly than does the density, and the ion satura­

tion current is very nearly exponential up to times of the order of A/vo' 

This kind of departure from an exponential decay is frequently observed for 

microwave plasmas but sheath expansion at low densities would have the same 

effect so it cannot be said that this behavior has been experimentally ob-

served. Of particular interest is the fact that this derivation predicts 

that the electron temperature should fall -45% during the time that it takes 
the density to decay to lie of its original value. In fact the electron 

temperature does decay about 40% in this time provided the background press�re 

is not too high. Also note the actual lifetime of the density is 15-20% longer 

than the lifetime of the ion saturation current read by a Langmuir probe. 

At the high background pressures used with microwave plasmas, we expect 

ionization and excitation losses to be appreciable. We can calculate the 

density change by evaluating the rate coefficient in a manner similar to the 

above derivation: 

dN (00 at = n J crCv) v fCv) dv 
o 

where f(v) is a Maxwellian and o(v) is given by 

(52) 
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for v > Vo where Vo is the velocity of a 15.8 eVelectron. Equation (52) 

cannot be evaluated in closed form, but it can be expressed as 

1 
dN 10 7 at = 1.85 x 10 u w (u) Np 

where u = E/E. 

(53) 

The function w (u) has been calculated by computer and is available in 

tabulated form.13 � (u) can be approximated by 

e
-u 1 

� (u)e:[
l + u

J [20 + u + ,Q, n (1.25 { l + l/u})]. 

1 
The quantity u2 �(u) has been plotted vs electron temperature in figure 

17. Note that at high temperatures the rate coefficient is large and fairly 

constant but that as the temperature falls below the ionization energy 

(15.8 eV) the rate decreases sharply. This is phys ically what would be expect-

ed s ince at low temperatures only a small fraction of the Maxwellian tail 

participates in ionization loss. The plasma density then should increase 

like 

N = N e 
pt/T 

o 

where T is itself time dependent and is given by 

1 1" = 
1.85 x 1010 

u
t � (u� 

At the same time, the temperature should decrease like 

(54) 

(55) 
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23 � (eV) , (56) 

The first term is due to the fact that in every ionizing collision, the 

incident electron's energy is shared between two electrons and the second 

term is the energy lost in the ionization process. 

Equations (54) and (56) can be solved simultaneously by using figure 

17 if we make a stepwise linear approximation equation (54). To do this 

we start with some temperature, say 100 eV, and let the temperature and density 

change slightly with a constant T given by equation (55) evaluated at T
e 

= 10 0 eVe 

The new temperature is then used to find a new rate coefficient and the process 

continued until the temperature and density no longer decay appreciably. A 

graph of the time evolution of N and T
e 

obtained in this way is given in figure 

18. The decay can be calculated starting at any other temperature by simply 

shifting the time axis horizontally. Note that the abscissa of figure 18 is 

in terms of pt where p is the background pressure in Torr. This figure 

should be applicable to any hydrogen plasma including that from the gun. For 

example, if we start at t = a with T
e 

= 10 eV and assume a background pressure 

of 5 x 10
-7 

Torr, we conclude that in a time of 1 msec the temperature should 

decay to 3.5 eVe The actual decay rate is much slower than this by about two 

orders of magnitude. This discrepancy is most perplexing and leads to the con­

clusion that either the electron temperature is considerably less than has been 

measured by Langmuir probes or that the electrons are non-Maxwellian as pro­

posed by Erickson.
lO 

If excitation losses are inCluded, the decay rate should 

be even faster. At high background pressures where ionization losses exceed 

hanger losses, the pressure dependence of the temperature decay has been ex-
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perimentally verified. The slight density increase at low temperatures is 

usually masked by the decrease due to hanger losses, but it has been possible 

to generate a plasma with microwaves whose increase in density due to ioniza-

tion nearly cancels the hanger loss giving a density which does not decay 

appreciably in time. 

So far we have restricted our discussion to the electron component 

of the plasma. If we assume that the ions are produced at time t = 0 with 

a temperature T. « T, we can proceed to calculate the rate of temperature 10 e 
rise of the ions due to their interaction with the hot electrons. According 

to Spitzer,8 the rate at which the ion temperature changes in time is given by 

T -T. e 1 
T eq 'T eq 

where the equipartition time 'T is given by Spitzer8 as eq 

T (sec) :::;: eq -3 n (cm ) 

If we assume that the density decays exponentially with time, 

-tiT n = n e o � 

(57) 

(58) 

and that the electron temperature is constant, equation (57) becomes 

dL 
ai = 

n o 
14 T I e 

-tiT e 



Solving for Ti leads to 

noT t/ T. (t) = T 0 + J:; (1 - e- T ) , 1 01 14 T 1 
e 

34 

(59) 

Taking n = 2 x 109 cm-3 and T = 105 ok (-lOeV), with T = 1 msec, the ion o e 

temperature should ris e only -500 ok, The actual ion temperature rise is 

probably somewhat larger because1 when the plasma is firs t created, its 

density is cons iderably higher than is given by the exponential law. 
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