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INTRODUCTION 

It has been observed previously (PLP 129, 153, 165, 176) that it is possible 

to impart energy to electrons at the electron cyclotron resonance frequency in the 

toroidal octupole by filling the cavity with electromagnetic radiation at microwave 

frequencies. It would be most desirable to extend the technique to lower frequencies 

in an attempt to heat ions at their cyclotron frequency. 

The usual argument against ion cyclotron resonance heating (ICRH) asserts that 

since electromagnetic radiation does not penetrate a plasma if its frequency is 

less than the electron plasma frequency, ion cyclotron heating is possible only 

when w < w . •  In the octupole, with a typical magnetic field of 1 kG, this condition 
pe Cl 

would limit the plasma density to - 1.7 X 105 em-s. In fact, it is often possible for 

low frequency waves to penetrate a considerable distance into a plasma having a 

much higher density. For example, in the case of zero magnetic field, the penetration 

depth of electromagnetic waves of frequency w is given by 

0 = c �� -/,====72, 
Wpe - W wpe 

(1) 

where the latter approximation is valid for w « w  • If we require that the waves 
pe 

propagate a distance of 10 em, we conclude that ICRH should be possible at densities 

up to - 2.8 X 109 em-g. Since both the gtm and microwave-produced plasmas, in the 

toroidal octupole, have densities of this order, it may well be possible to heat 

ions by a fairly simple means. 

The frequency required for ICRH would be less than that required for ECRH by 

the electron/ion mass ratio m/M, or about 1 MHz. Since the lowest resonant mode of 

the present toroidal cavity is - 300 MIz, the usual method of resonating the cavity 

would be ineffective. At 1 MHz, perhaps the simplestway to generate electric fields 

within the plasma is by applying a voltage between the hoops and the wall. 

This case is also easy to treat theoretically since there would be no azimuthal 
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electric field (Ee = 0) and no electric field parallel to the magnetic field 

(E� = 0) . The elctric field can then be written as the gradient of a potential 

in � (magnetic flux) space: 

A drD dq> E = -s d� = - 'V1jJ d1jJ· (2) 

MKS units are used throughout. A useful conversion factor for the octupole 

case is 

1 dory � 3.1 x 10-\vebers = 3.1 x 105 gauss-cm2 

where 10 dorys are the total flux in the toroid at the normal operating field 

(2 kVon the capacitor bank, 800 guass at the outside wall midplane) . 

CALCULATION OF POTENTIAL DISTRIBUTION IN PLASMA 

The potential distribution inside an infinite parallel plate capacitor with a 

uniform transverse magnetic field and a nonuniform plasma density can be easily 

derived in the low frequency limit (w « w . ) .  If the plasma does not touch the 
Cl 

capacitor plates, the plasma polarizes in such a way as to satisfy the boundary 

condition sE = const. The zero temperature low frequency perpendicular dielectric 

constant is given by 

M+ m 
E = E + n. o B2 

For B = 1 kG and densities well above 5 x 107 cm-� Eq. (3) reduces to 

The potential distribution is found by integration: 

q>(s) = J E·ds = J const. 
E 

ds 

(3) 



In �-space, B cr 
d� 

and dS' 

B2 = const. f n ds 

B 
�(�) = const. f n d�. 
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The constant can be determined from the boundary condition that the potential 

difference between the capacitor plates is � : 
o 

�(s) (4) 

where d is separation of the capacitor plates. The prediction of Eq. (4) is that 

the potential tends to be constant in regions where the density is highest. 

A much more general expression can be derived taking into account non-uniform 

magnetic fields and arbitrary frequency. Assume that charges can flow freely 

-+ 
parallel to B so that Poisson's equation can be written for each field line as 

p [�.1 - c:j d� = O. 

As is frequently done, the term V'E� -p can be written in terms of a general 
o 

permittivity E which includes the effect of the polarization currents: 

From this we obtain the result: 

� dQ, P (V'E t ) 13 = 0 

Equation (5) is a general result valid for an arbitrary magnetic field provided the 
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density and potential are constant on a magnetic field line. 

A more useful form of Eq. (5 ) can be obtained by expanding and evaluating 

the divergence term: 

For an azimuthally symmetric poloidal magnetic field, B can be written as 

and Eq. (5 ) reduces to 

1 1 A B = 7IT vexv� = 2TIR e x v�, 

,.k I 'dE 
+ E 2£ I Rdt= 0 'J' € 'd� d� 

where R is the distance to the major axis of the toroid. 

(6) 

From Eq. (6) one can 

calculate E(�) and hence �(�) by applying the appropriate permittivity and boundary 

conditions. 

As a fairly general example, we will consider a collisionless plasma in an 

arbitrary magnetic field. The permittivity for an oscillating electric field linearly 

polarized perpendicular to B can be derived from the equation of motion for ions and 

electrons. The result is 

[ W 2 
1 _ ---,,-

pe
_ 

w2 - w 2 ce 

(7) 

Note that ln the limit of w » w , Eq. (7) reduces to the familiar result: ce 



Also for w « w ., Eq. (7) reduces to CI 

which is identical to Eq. (3). 
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To simplify things somewhat, we will consider the wave frequency to be much 

smaller than the electron cyclotron frequency (w « w  ) but comparable to the ion ce 

cyclotron frequency (w � w .) . For this case CI 

and 

W .2 -CI 

� W 2 2w .2W .2 
pi 1 an pI CI 

w
-

.
-

2 
..... _-W

-
2

- n 31jJ -
(w .2 _ w2) CI CI 

Assuming that the density is high enough that 

[ w .2 
pI 

W .2 -
CI 

1:. dB ] 
B a1jJ • 

(i.e., n » 5 x 107 cm
-

3at B = 1 kG), the above quantities can be substituted into 

Eq. (6) to obtain the result: 

where B = M w is the value of B which gives ion cyclotron resonance at the wave o e 
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f h . .. 3n 
d 

3CP E 
requency. T e quantitles n, 3t)J

' an 3t)J 
= 2nRB are assl@ed to be independent of 

t and can be brought out of the integral leaving 

32CP -cfi 
a</!2 

+ cfi 

- 2 cfi 

R2B 
dt + 2! 3R r RB 

a</! B2_B 2 a</! B2_B
O 

2 
0 

R2 

B2_B 2 
0 

aB dt + 1:. an cfi 
3t)J n a</! 

R'B' dB ] 0 - dt 
(B2-B

o 
2) 2at)J 

R2B 

B2_B 2 
0 

dt 

dt 

(8) 

Equation (8) is the first major result of this paper. From it one can ca1 -

cu1ate CD(</!) from a knowledge of n (t)J) and the geometry of the field. It is useful 

to stop at this point and list the assumptions that were made in its derivation: 

1 )  Density constant on a magnetic flux surface: n = n(</!) 

2) Potential constant on a magnetic flux surface: CD = CD(l!J) 

3) Plasma not in contact with the electrodes producing the electric field 

4) Gyroradii small compared with characteristic distances such as B/lvsl, 

5) Azimuthally symmetric po1 oida1 magnetic field 

6) Collisionless plasma 

7) Low frequency electric field: 

8) High density: 

w « w  , w  � w . . ce Cl 

»1 
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The above assumptions may seem rather restrictive but they are reasonably well 

satisfied in the plasmas normally studied in the toroidal octupole. 

Equation (8) will not be evaluated in this paper, but one limiting case, one 

in which w « w  . , will be considered. In this low frequency limit the resonances 
Cl 

at B = B
o 

do not appear and Eq. (8) reduces to 

o. 

Th 1 h ·  1 f d 
1 aR 1 3B 

d 1 3n . 1 e ast t ree lntegra s are 0 or er R a�' B 3�' an n 3� respectlve y. 

(9) 

Unfortunately these terms are all of the same order except perhaps the first which 1S 

slightly smaller than the others in the octupole case. For a straight, uniform 

field, R � and �� + 0 so only the third integral remains. In this case Eq. (9) 

reduces to 

a2<l? + 1:. an � = 0 
a�2 n a� 3� • 

This equation can be solved for �! by integration: 

J 
or 

dn J n = 0 

a<l? _ c $ - - 1lCi0 
where c is a constant to be determined from the boundary conditions. One further 

integration gives <l?(�): 



For the octupole, take �(� = +5) = 0 and �(� = -5) 

as 
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� ,then �(�) can be written 
o 

(10) 

Note that Eq. (10) is of the same form as Eq. (4) indicating that Eq. (8) is correct 

in the limit of low frequencies and uniform fields. 

Finally, for w
ci 

« W « w
ce

' Eq. (8) reduces to 

a2� � R2Bdl + a� r� RB aR 
d,Q, 

a�2 a� � a� 

+ J. R2 aB 
d,Q, + 1:. an J. R2Bd,Q,J = 0 'J' a� n a� 'J' 

For a straight uniform magnetic field, this equation can be solved for �(�) in 

a manner similar to that of Eq. (9), giving a result identical to Eq. (10) . This 

fact suggests that Eq. (10) is more general than is implied by the assumptions 

required for its derivation. 

CALCULATION OF REQUIRED POWER 

If the rf power could be coupled to the plasma with 100% efficiency, the power 

required to heat the ions from zero temperature to T
i 

would be given by 

NkT. 1 
P =-­

t 

where N is the number of particles in the cavity and t is the rf pulse duration. 

For the s band microwave plasma, N : 1015 . Taking a pulse length of t = 1 msec, 
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we conclude that only . 1 6 Ware required to raise the temperature by 1 eVe 

In reality, there are other los s es which would almos t certainly lower the 

efficiency. It is pos s ible to represent the electrical coupling between two 

W lines as a parallel RC 

dx 

� represents the differential res is tance which res ults in ion heating and dRo 

represents other los s mechanis ms s uch as diffus ion, particJe los s to the walls and 

hoops , and perhaps others . dxc is the differential capacitive reactance which 

dis tributes the potential according to the derivation in the preceeding section. 

The power which is useful for ion heating is given in terms of � by 

(11 )  

where � can be found from Eq. (8) or, s ince dRo may be s maller than dxc' � 
s hould probably be meas ured experimentally. 

The res is tance � can be calculated by expres s ing it as a function of a 

real conductivity, 

d� = 
di = d� / �J a ERd8dt . 

Or by writing E as 
d� 

2IT dijJ RB, we obtain 

� = 4IT2 ¢ BR2dt . (1 2) 

Note that the R in the integral is the dis tance to the major axis of the toroid 

and not a res is tance. 
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In order to proceed further, it is necessary to express a as a function of 

1/J and R.. The conductivity can be written as 

a = -w 1m E. (13) 

Note that if a permittivity such as that of Eq. (7) is used, the perpendicular 

conductivity is zero. This fact raises an interesting paradox. It rreans that in 

a collisionless plasma, no power can be absorbed from a wave even if its fre-

quency is the same as the electron or ion cyclotron frequency. The explanation 

lies in the fact that Eq. (7) is derived from the steady state equation of motion of 

a charged particle. Since an oscillating electric field at the cyclotron frequency 

will continuously accelerate particles, a steady state can never be reached. In 

reality there is always some dissipative effect such as collisions which limits 

the particle energy and causes power to be absorbed. 

If a collision frequency v is assumed, and if w is taken to be well below the 

electron cyclotron frequency, the perpendicular permittivity can be written as 

2 
- � 

which for v « w becomes 

W 

The conductivity in Eq. (13) then becomes 

w-iv 

J (w-iv) 2-w .2 cl. 

The spatial dependence of a is more easily recognized by making the substitutions: 



e w . = M- B, 
Cl 

The conductivity is then written as 

and Eq. (12) becomes 

e w =-B M 0 ' 
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e 
v = M fill. 

For � sufficiently small, most of the contribution to the integral comes from 

B � Bo' and B can be expanded in a Taylor series about Bo' 

B(,Q,) � B + ,Q,aB 
o a,Q, B o 

where ,Q, = 0 is taken to be the position at which B = Bo' Then to first order, 

B2 - B� becomes 

and the integral can be written as 

� = 21T2ne 
00 

f 
-00 

,Q,2 

= 2n3ne Bo I 
res 

R2B L'lB 
0 

(��J 2 
+ (L�B) 

R2/ aB 
a,Q, • 

d,Q, 

( 14) 

The sum is taken over every intersection of the � line and the constant B surface 

B = B o' Substituting Eq. (14) into Eq. (11) gives the power absorbed by the ions 

between � and � + d�: 

R2j aB d," 
a,Q, 'V • (15) 
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Equation (15) is the second major result of this paper. From it one can calculate 

the amount of power absorbed by the ions on each � line provided the potential 

distribution � (�) is known. Equation (15) is valid under the same conditions as 

Eq. (8) except that no assumption about the magnitude of the density was made. 

Equation (15) can be used to calculate the spatial dependence of the ion 

temperature: 

where V' = ¢ �. 
From Eq. (15) we obtain 

dB 
Ro/ are (16) 

This prediction suggests that ion cyclotron heating should not be effective near the 

separatrix since V' + 00 there. 

It is of interest to digress for a moment to consider how this treatment might 

apply to electron cyclotron resonance heating. Since Eq. (16) is independent of 

the particle mass, it applies equally well to the electrons provided of course that 

B
o 

is interpreted as the value of B for which electron cyclotron resonance occurs. For the 

d� high frequencies involved (> 1 GHz) , � lines are not equipotentials and � must 

be written as E/2nRB. For short wavelengths and low densities (w 2 « wv), it 
pe 

can be assumed that the electric field is random and can be averaged over a flux 

surface to give a mean square perpendicular electric field � 
ature is then 

res 

1/ dB 
dR-

Written in slightly different form, Eq. (17) becomes 

The electron temper-

(17) 
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I R 

res 

If we include the effect of ionizing collisions, we conclude 'that the electron 

thermal energy levels off at a value near the ionization energy Ui' and the density 

distribution can be written in terms of an initial distribution n (�) as o 

U. l 
I 

res 

R (18) 

Equation (18) is identical to Eq. (5 ) of PLP 14 2 except that the unknown constant. 

IIiUltiplying the surrnnation has been evaluated. The result of PLP 14 2 came from 

purely geometrical considerations and lends confidence to the present treatment. 

The term I R/V' Iv� x VB I is plotted vs. � for various values of Bo in Figs. 3-7 
res 

in PLP 14 2. 

Furthermore, it is possible to calculate the total number of electrons produced 

by integrating Eq. (18) over-all � using the fact that 

The result lS 

11 eEZt dV / 
N = 

no 2" --u:- dB • 
l 

B o 
This same result was obtained by a similar method in PLP 186. 

Another prediction of Eq. (15 )  is that the power absorbed by either electrons 

or ions and hence the temperature obtainable is proportional to.E2t. For ECRH, 

electric fields of about 200 V/crn for times of about 100 llsec are required to 

ionize the gas (� 15 eV) and raise the electron temperature to a few eVe By 

this reasoning we conclude that the order of 100 V/dory electric field for 1 msec 

would be required to effect appreciable ion cyclotron heating. By actual measurement 
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of the hoop to wall impedance, R
o 

appears to be several hundred ohms for the 

s band microwave produced plasma and hence � 5 kW of rf power would be required 

to generate the necessary voltages. The efficiency of power conversion in this case 

would be about .01 %. By a very rough evaluation of Eq. (16), it appears that the 

theoretical prediction for ICRH gives a result that is the same order of magnitude 

as that deduced from the ECRH tests. More exact calculations of these quantities 

will be carried out by computer in the future. 

One objection that one might raise to the preceeding theory is that it is 

based on the use of a zero temperature dielectric constant. In effect, we have 

assumed that the particle gyroperiod is short compared with the time required for 

the particle to drift into an appreciably different magnetic field so that a 

steady state exists at all times. If � is the scale length of the magnetic field, 

B/lv BI, this condition places an upper limit on w�e particle energy for which the 

above treatment is valid: 

8mn 

If we take a typical value of, say, � = 1 em, we conclude that for electrons the 

theory is valid for energies up to 2.5 keY for s-band or 25 keY for x-band micro-

waves. For ions the situation is considerably worse as indicated by the mass in 

the denominator. For a frequency of I MHz we expect the model to break down above 

about 0.5 eV for protons. The problem is worse if one considers that near resonance 

even smaller changes in the particle position, of order v B/lvBI would be sufficient w 
to destroy the steady state. However, if most of the particle energy is in perpen-

dicular motion, the situation is improved by the factor T�/�\. 
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Plasma was produced by a 5 kW, 144 �sec, pulse of 3250 }�z microwaves. The 

microwave pulse began 1 msec after the beginning of the magnetic field pulse, and 

the magnetic field was operated at .37 of its usual value. The background gas 

pressure was 5 x 10
-

5 torr (HZ)' 

Figure 1 shows the magnitude of the impedance measured as a function of 

frequency at Z msec after the beginning of the magnetic field pulse. From 10 kHz 

to 1 MHz the plasma can be approximated as a parallel RC circuit with R = 350 D and 

C = 3000 pF. Measurements of the phase of the voltage and current confirm that 

the load is indeed resistive at low frequencies and capacitive at high frequencies. 

The impedance does not vary appreciably for RF signal levels in the range 1 to 

30 V peak-to-peak. Of the 3000 pF, approximately 300 is due to external wiring. 

An effective dielectric constant of the plasma can be estimated by comparing this 

capacitance with the measured vacuum capacitance: 

3000 - 300 
850 

= 3.2. 

The increase in impedance above 1 MHz is unexplained, but it may be due to stray 

inductance in the wiring. 

The next step consisted of actually measuring �(�) with an RF voltage applied 

between the upper outside hoop and the wall. The other three hoops were allowed to 

float. The potential was measured with a 10 Mn floating probe. The results are 

sho�TI in Fig. 2. Note that, as predicted, most of the voltage drop occurs near 

the boundaries of the plasma. In the region of highest density (-4 < � < 0), 

the electric field is essentially zero. The probe measures floating potential 

rather than plasma potential, but this does not matter since only the peak-to-

peak value of the sine wave was measured. 
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