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INTRODUCfION 

In this paper, the major results of PLP's 186 and 207 will be derived 

in a more concise and rigorous way, and the treatment of electron cyclotron 

resonance heating will be extended to higher densities. 

The basic method is to calculate the power dP absorbed by a volume 

of plasma dV in the presence of an oscillating electric field E = E eiwt 
o 

in terms of a real conductivity, cr: 

dP 
<IV = 

where j32 is the mean square electric field: 

and cr is found from a complex permittivity E by 

cr = -w 1m E. 

For an azimuthally symmetric poloidal magnetic field, the power can be 

written as 

(1) 

Since cr is generally frequency dependent, it is useful to consider 

three separate cases which span the entire frequency spectrum: 

1) w $ wci (ion cyclotron resonance heating) 

2) W - wce (electron cyclotron resonance heating) 

3) w » wce (resistive heating) 

ION CYCLOTRON RESONANCE HEATING 

For W < W . we expect � lines to be equipotentials: ¢ = ¢(�). If , - Cl 

in addition, we apply the electric field in an azimuthally symmetric way 



such that Ee = 0, the electric field in the plasma can be written as 

diP 2 nRB CI;jj' 

and Eq. (1) becomes 

� = 4n2 (�r 4 (jR2Bd�. 

The permittivity appropriate to the prescribed conditions is 

£ = £ [1 _ Wpi 2 
o W (w2 

w - iv. 1 
- W . 2 - v.2) C1 1 

and the corresponding conductivity is 

(j = £ W .2V. o p1 1 
w2 + W . 2 + v.2 C1 1 

Note that the collision frequency v. shifts the resonance off the ion 1 
cyclotron frequency. For the usual case of v· « w the conductivity 1 
becomes 

(j = £ tIL. 2V• o p1 1 
�(W' 

and the power absorbed is given by 

w2 + W . 2 C1 
- W . 2)2 + C1 

2 

where B M B M and b.B M = e wci' 0 = e w, = e vi· For b.B sufficiently small, most 

of the contribution to the intergtal comes from B � Bo' and B can be 

expanded in a Taylor series about Bo' 

B (�) � Bo +� �� I B • o 
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The integral can then be evaluated explicitly: 

dP _  (d J 2 °O  Q.iji - 27T2ne � f 
-00 

d51. 

(2) 

The sum is taken over every intersection of the 1jJ line with the constant B 

surface B = Bo' 

where 

The ion heating produced by this power can be calculated from 

dV d51. V' = � = � B' 

The ion temperature increase is then 

In a real experiment one would probably measure �(1jJ). However, an 

equation for �(1jJ) can be derived from Poisson's equation written in the 

form 

Substitution of the appropriate permittivity (with vi = 0) leads to the 

differential equation (see PLP 207): 



- 2 cj R2B2 aB 

(B2_B 2) 2 aljJ 
o 

ELECTRON CYCLOTRON RESONANCE HEATING 

4 

o. 

For W - wce we cannot expect ljJ lines to be equipotentials and the 

electric field E must be retained explicitly. E can be decomposed into 

components perpendicular ffi1d parallel to B: 

E = 13.1. + Elt • 

The perpendicular permittivity is similar to that 

E = 
� EO 

[ w 2 

l - � 
W (w2 

W - 1Ve 
2 _ \! 2) - Wce e 

The parallel permittivity lS somewhat simpler: 

For ve « wce the respective conductivities are 

and 

-

for the ion case: 

ZiONe] . 



The power absorbed can then be written as 

The boundary conditions on 13 require that 

Ell = const. and S.J. 13.1. = const. 

We can therefore bring E
I
� out of the integral and write El as 

S2 
o 

Since 

* 
sj..s.l 

S2 o 

5 

d.Q, 
B· 

where a = wpe
2/w2 = nin

e
' the magnetic field can be expanded in a Taylor 

series as in the ion case to give 

provided we assume that a « 1. The power integral can now be written as 

dP 1 

CliP = Z ne + 6BEJ ] d.Q, 

B 2 B 
o 0 



For an isotropic electric field, E!� and E2 are of the same order. In 

particular, 

For �B « B  and a « 1, the parallel component of the integral can be o 
neglected and the power becomes 

dP 1 2�B Cfiij = 3" ne E 13 
o 

TT ne E 2 
= 3" B� 

0 

_ TT ne E2 I =
3" B 

0 
1/ 

7T -
= 3 ne E 2 d�V 

aJ3a"iij 

L 1/ dB 
d£ 

dB 
dJ/, 

B 
0 

(4) 
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This result is identical to that derived in PLP 207 under the more stringent 

condition of wp� « wv. The present result is valid for wp� « W2 or 
d2V n « nc' The quantity � lends itself to a simple physical interpretation 

Slnce it represents the differential resonance volume in the flux shell 

As in the ion case, the temperature increase can be written as 

1mT /e e (5) 

provided diffusion and energy losses are neglected. The quantity 
1 d 2V. V'� 1S plotted vs. � for various values of Bo in PLP 142. If ionizing 

collisions are taken into account, the power balance can be written as 



where Ui is the ionization energy. But � can be written in tenus of 

the ionization time Li as 

7 

Substitution of this relation and Eq. (4) into the power balance equation 

leads to the following differential equation for kTe: 

kT +U. d (kT ) + e 1 = � e E2 at e L. .J 
1 

(6) 

If the duration of the rf pulse is short compared with Li' the second 

tenu can be neglected and the temperature increases linearly with 

time according to Eq. (5) until the rf is turned off whereupon the tem-

perature decays according to the equation 

kT + U. 
�t (kTe) + e 1 

= O. 
U l.. Li 

If the rf pulse duration is long compared with Li' the temperature 

initially increases linearly, but after a time of -Li it levels off at a 

value given by 

The density then increases according to the equation 

dn _ Tf e E2 n d2V 
at - 3V ' (kT f + U.) <maiJi e 1: 
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which has an exponentially growing solution: 

The ionization time T· is unfortunately a complicated function not 
1 

only of the electron temperature but also of the exact form of the electron 

velocity distribution. It can be formally written as 

-.l =nnf cr· (v)vf(v) dv 
Ti 0 1 

where cr· (v) is the ionization cross section and fey) is the electron 
1 

distribution function. The ionization time has been calculated for the 

special case of a Maxwellian distribution in PLP 1 4 2. The result is 

sufficiently complicated that an analytic expression cannot be written, 

but a graphical solution is presented in PLP 142. 

The efficiency of power transfer for electron cyclotron resonance 

heating can be written as 

where Po is the input power to the cavity. The mean square electric 

field can be expressed in terms of Po and the perturbed Q of the cavity as 

- PoQ 
E2 = __ 

'C..owV· 

For n(�) = const., the efficiency therefore becomes 

B 
n = � Q 

n
n 

v
o

: c 
B o 

Hence for efficient heating, we want a high Q, a high density, and an rf 
. B 

frequency such that V
o :1 is large. 

Bo 



RESISTIVE HEATING 

For W » wce' heating takes place only through collisional resis­

tivity, and the magnetic field serves only to inhibit the flow of plasma 

energy to the walls of the confinement device. The permittivity is 

isotropic and has the form 

£ = £ o 
[1 _ � W + i'X>e ] 

W w2 + V 2 e 
The corresponding conductivity is 

(J = 
2 OYe Ve 

£0 
w2 + V 2 e 

As in the previous section, the electric field can be decomposed into 

perpendicular and parallel components which are subject to different 

boundary conditions, and Eq. (1) takes the form 

Since 

* 

££ 
£ 2 o 

the power can be wri tten as 

(W2 - �e2) + W2Ve2 

w2 (w2 + V 2) e 
, 

For the usual case of ve « w, the above equation becomes 

9 
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[ + 2a J ve a 
(1 -a) 2J 

VI 

where 

It is clear from the above expression that the absorption decreases 

monatonically with decreasing density and in the limit n « nc becomes 

(7) 

The mass dependence indicates that the power 1S abosrbed almost entirely 

by electrons rather than ions. 

Following the usual procedure, the temperature rise can be calculated: 

(8) 

The temperature rise is independent of W if ve is constant in space. 

Ionization can be included by a method exactly analagous to that in the 

previous section leading to the differential equation 

kT + u. e 1 
T· 1 

2 -= V �E2 
e • 

mw2 

For neW) = const., the efficiency of resistive heating is given by 

1 f dP n ve 
n = p dW 

dW = 
Q n w· 

o c 

(9) 

Hence, resistive heating is less efficient than electron cyclotron resonance 

heating by the factor 


