
ELECTRON CYCLOTRON HEATING OF AN ANISOTROPIC PLASMA 

by 

J. C. SPROTT 

December 4, 1969 

PLP No. 322 

These PLP Reports are informal and preliminary and as such may contain 
errors not yet eliminated. They are for private circulation only and are 
not to be further transmitted without consent of the author(s) or major 
professor. 

Plasma Studies 

University of Wisconsin 



Electron Cyclotron Heating of an Anisotropic Plasma 

by 

J. C. Sprott 
Departments of Physics and Electrical Engineering 

University of Wisconsin 

In this PLP, the heating model of PLP 282 will be extended to plasmas 

in which the electron velocity distribution is anisotropic (or, equivalently, 

plasmas in which the particle density is not constant on a magnetic field 

line: V" n � 0). Magnetic mirror confined plasmas are necessarily aniso-

tropic because of the loss cones, and multipole confined plasmas also 

exhibit a degree of anisotropy at high energies when electron cyclotron 

1 
resonance heating is applied. The calculated heating rate for non-relativistic 

electrons is completely general in the sense that, for a given density distri-

bution net), the heating rate can be determined exactly for an arbitrary 

magnetic field. It will be shown that the calculations of Guest2 and the 

non-relativistic limit of Grawe's3 results are a special case of this more 

general theory in which the magnetic field along the axis is parabolic in 

position and in which a special distribution function is assumed. 

It was shown in PLP 282 that the power absorbed by the plasma in a flux 

shell dW is given by 
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where E� is the rms perpendicular rf electric field, and the subscript 0 

refers to the value of a quantity at the resonance zone. The number of 

electrons in d1jJ is given by 

so that the average heating rate of electrons in dW is 
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For n(t) = const, equation (2) reduces to 
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which is the special case previously used to calculate heating rates. 

(2) 

(3) 

The only approximations used to obtain equation (2) are the following: 

1) 

2) 

3) 

4) 
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Conditions 1), 2), and 3) are easily satisfied by non-relativistic plasmas 

in most experimental devices. Condition 4) is satisfied except for a very 

special distribution function that will be described later. 

In order to compare equation (2) with other calculations in the 

literature, we will consider the special case of a magnetic field given by 

B(Z) = B(O)(l+,Z2). 

For n(t) = const, 

and 

The 
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heating rate is then 
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where r = B /B (O). o 
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As a second example, we will consider a distribution function in which 

all the particles mirror at the same distance from the midplane, ZM' In 

the a bsence of parallel electric fields, the density distribution for this 

case is given by 

[ a.lB (Z)/v
,,

(Z) 

n (Z) = 
o 

where vII (Z) = 'i (0) 18 ';z�_z2 . 
For this n (Z), we obtain 

and 

where 

Z 

J 
11 n (Z)dZ = 

B (Z) o 

for Z$ZH 

for Z>ZM ' 

Substituting the a bove results into equation (2) gives a heating rate of 
2 
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o 

(5) 

In a recent paper on stochastic heating, Grawe3 treats the same problem 

by solving the equation of motion of a relativistic particle that executes 

sinusoidal oscillations along the magnetic field: 

He makes the following approximations: 
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1) homogeneous rf electric field 

2) random phases 

3) B(Z) = B (O) (1+BZ2) 

4) E
ll = 0 

5) no collisions or other scattering processes 

6) II W J.. « W.1. 

7) we « Wc 

8) 
W r-l a = ---» 
Ws 4r 

l. 

Grawe's result in the non-relativistic limit is 

dW 1TeE2 W 2 
dt 

= � (o;-)Ja(l-o) 
[a(l+o»), 

o S 

where J is a Bessel function of order a(l-o). 

(6) 

In order to compare the two results, consider the case 0=1, for which the 

Bessel function can be approximated by 

W 2 S r 2 W r-l 
'" -- -- cos [---1T W r-l Ws 2r 

Since the argument of the cos
2 

term is large as required by condition 8) 

above, the solution oscillates rapidly, and we can take the average value: 

cos
2 

[� r-l _ 2!..] 1 
Ws 

2r 4 
= 2 . 

Substituting into equation (6) gives 

dW eE
2 

r 
dt 

= 2'i3" r-l ' 
o 

which is identical to equation (5) with 0=1. 

The equivalence of the two solutions is a satisfying result since the 

approaches are considerably different. The advantage of the present treat-

ment over most of those considered in the literature is that the dynamics 
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of the particle motion is hidden in the conductivity used to derive equation 

(1), and so the technique is not restricted to geometries for which the 

particle trajectory can be analytically evaluated. Furthermore, for non-

relativistic electrons, the assumptions required to derive equation (5) are 

less restrictive than those required for (6), and the algebra required to 

produce the answer is simpler. 

The same result can also be obtained by a simple phenomenological argu-

ment. The average energy gained by an electron during one transit through 

the resonance can be written as 
2E2 

1 -2- e ...LO 
AW = "2 m A'i = 2m 

where T is the time during which the electron stays in phase with the electric 

field, or the time required for the electron to cross the resonance region. 

Kawamuxa and Terashima4 used the above expression to calculate the heating 

rate in the TP-M machine at Nagoya University (Japan). Lichtenberg5 et al. 

have proposed a similar expression, differing only by a numerical factor of 

order unity, by solving the Fokker-Planck equation for a Markovian process. 

The transit time of the particle through the resonance can be approximated by 

as suggested by various authors�·2,6.7 The resulting energy gain is 
2 '!TeE 

I:::. tv = -=-_,:.1.=.0"-::-0 2vllo lv"oBI • 

Kuckes7 arrived at an identical result by solving explicitly the equation of 

motion of an electron that moves through the resonance region with constant 

parallel velocity in a field with a constant gradient parallel to B. The 

heating rate of an electron in a mirror field of the form considered by Guest 
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and by Grawe can be calculated from the above result as follows: 

dW 
_ 2wQ - = ll'� -I-' = 

dt 1T 
eE
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The result is identical to equation (5) . 

The dependence of the heating rate on 6 is reasonable since 6 approaches 

zero as the mirror point of the particles moves closer to the resonance 

region. For a distribution of particles that all mirror at the resonance 

(6=0), the density ris es rapidly as the resonance is approached, and becomes 

infinite at the resonance point. Equivalently, particles that mirror at 

resonance spend an infinitely longer time in a region dZ at Z=ZM than in a 

region dZ at Z<ZM' and so the particles stay in resonance for a much longer 

time than would be the case if they traversed the resonance with a non-zero 

Nevertheless, the results of Guest
2 

and Grawe
3 

indicate a finite heating 

rate at 6=0. This apparent contradiction comes from the fact that condition 

4) on page 2 is violated for this special distribution function. 

The heating model can be easily extended to this case, if we replace the 

density at n with an average density within the resonance region: 
o 

A more precise derivation would start with the conductivity used to derive 

equation (1) , and allow the density to vary near the resonance at £=0 according 

to 

The integral is evaluated in 
2 

I eE v dP = (J E2 d£ = .1.0 
dl/J J. ..LO B w 

a straightforward manner: 
2 2 f.� (w +wc
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The result is the same as would have been obtained if the previously esti-

mated average density had been substituted into equation (1). The average 

heating rate is calculated by dividing by the number of particles in d�, 
Z 

dN 5 nd� Ct 1 I 
0 

d� 
= 

13
=

00-
s 0 -{ZZ_Z2 

o 

to get the result: 

dW 
dt 

= 

2 
The width of the resonance �z is calculated by a method suggested by Guest: 

or 

Using this 

I
�Z/2 

d� TI 
2 (w-w )-- = -

c v. 2 '  
o • 

2/3 

value for �Z. the heating rate 

dt-l 
eE2 

2w 
1/3 2/3 

J.o r 
-= 

[
31TW ] [ r-l ] = 

dt 
2 fiB S 

0 

is 

eE2 
1/3 2/3 

0.21 
B
J.o 

[�] 
r 

(7) [ r-l ] W
s 0 

which is identical to the non-relativistic limit of Grawe's result (equation 

(6» with 0=0, except that his coefficient is 0.79. Guest
2 

also obtained a 

similar result with a coefficient of 0.45. The heating efficiency of parti­

cles that mirror at the resonance zone is a factor (w/w )
1/3 

greater than for 
S 

particles that mirror well beyond resonance (0)0). For typical cases, this 

enhancement is less than an order of magnitude. The non-relativistic model 

predictS no heating for electrons that mirror before the resonance (0<0). 

3 
Grawe has shown, that at relativistic energies, heating does occur for these 

non-resonant particles. 
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In many experimental situations, the distribution required to produce 

the heating rate given by equation (7) probably cannot be attained. For 

example, in mu1tipo1es where most of the particles pass through a region 

where B is very small, the magnetic moment is not well conserved, and the 

8 
mirror points of energetic electrons fluctuate widely. At low energies, 

coulomb collisions cause the electrons to diffuse rapidly in velocity space. 

Parallel electric fields, either from the microwaves or from space charge 

effects, casue a broadening of the density distribution near resonance. 

Magnetic field errors may also smear out the particles. 

In these situations, it is probably more realistic to assume a distri-

bution function in the midplane of the form 

f = Ae 
o 

Wi (0) W" (0) 

kT.&. 
e 

Using the conservation of energy and magnetic moment, we can write 

and 

so that 

W
.,L

(O) = B (O) W 
B J. 

B (O) w" (0) = W,. 
+ Wl. (1 - -

B
-) , 

the distribution function off 

B (O) Wl. 

f (W
J.

,W .. 
,B) = 

BkTJ. 
Ae e 

the midplane is 

W,.
+W.L. (l-B (O)/B) 

kT II 

given by 

The density distribution is determined by a simple integration: 

n (R,) 

This distribution, incidently, suggests a simple means for estimating the 

anisotropy of a plasma by measuring the density gradient, since 
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Note that for 6=1, n(�) • n(O) = const, as required for an isotropic distri-

bution. If we assume a parabolic mirror field, we obtain 

and 

n 
o 

= .::..rn;;.;... (;:..;;O� )_ 

1+8Z
2 
o 

dN = ICC> ndZ = lTrn(O) 
d� 0 B 

2B ;sa 
o 

• 

Substituting into equation (2) gives the heating rate: 

2 
eE

.&.o re-dW 
dt 

= 
2B(0) (1+8Z

2
6) 1Ir:r • 

o 

For an isotropic plasma (6=1), the heating rate reduces to the case in 

(8) 

equation (4). The effect of the anisotropy is to enhance the heating if the 

resonance 

well away 

is near the midplane (Z =0) o 

from the midplane (8Z
2

>1). o 

and to reduce the heating if it is 

This result is reasonable since a large 

anisotropy causes the electrons to remain near the bottom of the magnetic 

well. For a real magnetic mirror with a finite mirror ratio, the assumed 

distribution function would have to be replaced by a loss cone distribution, 

and the problem would have to be solved using a more realistic B(Z). In 

order to arrive at equation (8) using the usual analytic evaluation of 

particle trajectories, it would be necessary to integrate Grawe's Bessel 

function solution (equation (6» over a weighted distribution of values of 

6. Such a procedure would almost certainly require numerical methods. 
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