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Kuswa
l 

has observed that when microwaves are used to heat electrons at 

the electron cy clotron frequency in a toroidal octupole with low neutral g as 

pressure, there is a significant ion heating , much larg er than can be ex-

plained by electron-ion coulomb collisions. 
2 

Consoli, et.al., have observed 

a similar effect when a cloud of cold plasma moving along a field line falls 

throug h a magne tic gradient where e lectron cyclotron resonance heating occurs. 

The electrons g ain perpendicular e nerg y as they pass throug h resonance, and 

the -J,l 
e 

Vii B force accelerates the electrons along the field, producing an 

ele ctric field that drags along the ions. The theore tical de scription pro­

posed by Consoli
2 

and others, however, is inadequate for explaining the 

he ating in multipoles and other devices where the plasma is initially spread 

out along the mag netic field and completel y encompasses the resonance zone. 

In this PLP, we will calculate the ion heating produced by a chang e in 

the anisotropy of the electron distribution under certain limiting conditions 

that approximate the experimental conditions in multipoles and similar de-

vices. We assume that the plasma is characterized initially by isotropic, 

nearly Maxwe llian, electron and ion distributions with different temperatures. 

An anisotropy is then introduced in the electron distribution by , for example, 

preferentially increasing the perpendicular energ y by electron cyclotron 

resonance heating. The electron density then increases in the reg ion of small 

mag netic field creating an electrostatic potential well in which the ions 

oscillate. The electric field is solved self-consistently f or the special 

case in which the form of the ion distribution at the local magnetic field 

minimum remains unchanged except for a chang e in temperature . The result 
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�vill be to show that if the anisotropy develops gradually, the ions behave 

adiabatically and undergo a compressional heating followed by a corresponding 

cooling when the anisotropy slowly disappears. If the anisotropy appears 

suddenly, however, an irreversible, non-adiabatic heating occurs. 

Let 1 be the length along a magnetic field line measured from a local 

field minimum. Assume the electron and ion energy distribution functions at 

1=0 are given by 

W (0) 
.1..e 

f (W ,W ,0) · Ae exp(- kT )exp(-e �e ne �e 

W (0) 
II e 

) kT 
II e 

W (O)+W (0) 
.Li IIi 

f. (W ,W ,0) 
1 ...l.i IIi 

= Ai exp (- ---=-k'=T---) 
i 

In the above equations and throughout this paper, a quantity such as W (0) 
.Leo -+ 

means the component of electron energy perpendicular to B; the subscript 0 

means time taO, while the (0) means position 1=0. The assumed distribution 

functions are nearly Maxwellian and represent a good approximation to the 

distribution in toroidal geometries and in open ended systems with a high 

mirror ratio where the loss cones are small. The electron distribution can 

be written in terms of the magnetic moment �e and total energy We-e¢, where 

4} is the electrostatic potential (taken as zero at 1=0) , as 

f (� ,W -e4}) 
e e e = A exp(­e 

� B(O) e 
kT 

)exp(-
.le 

W -e¢-j..I B(O) e e 
kT ). 

fie 

If the magnetic moment and energy are conserved, the distribution function 

written in this form is valid at all � for which B mona tonically increases 

from 1=0, and can therefore be written as 

f (W ,W, ,1) 
e .J.e Ie 
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The density distribution is detennined by integration: 

where 8 is the electron anisotropy: 

e = T IT • J.e lie 

Note that for 8=1 (isotropic electrons), n is independent of B and has the e 

familiar exponential dependence on�. The ions are assumed to remain iso-

tropic, giving the simpler result: 

n.(�) = n.(O) exp(- e��� » • 
1 1 i 

+ 

If we neglect density gradients perpendicular to B (�n=O), Poisson's 

equation can be \vritten in the one-dimensional fonn, 

The problem is linearized in the usual way, 

1 + �� 
kT 

to obtain the differential equation, 

2 2 T.+T n (O)B(t) 
d

d
n � - :e k (T � T. 

'\e
H = : [B (O)+[B (t)-B (0)] 8 - ni (0)] 

• 

� 0 1 Ie 0 

The first tenn on the right hand sid e can be expanded in a taylor series 

about t=O: 

where 

B(R.) ,., 2 
B(0)+[B(t)-B(0)]8 1 - (e-l)St , 
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The differential equation then becomes 

d2� � e 2 
- - - = - [n (O)-n. (O)-n (0) (6-1) SR. ], 
d£2 

A
2 £0 e 1 e 

where we recognize the Debye length, 

A = 

Note that for an isotropic plasma (8=1), ne(O)=ni(O), and all potentials fall 

off exponentially in the order of a Debye length. For 6+1, the potential has 

the parabolic form: 

T T 
� = kS ( i lie )(8_1)£2 

e T
i+Tlle 

The potential vanishes if the electrons are isotropic or if either the elec-

trons or ions are cold. 

Now consider the parallel equation of motion of an ion: 

Mv 
tli 

d<P dB = -e d� - lli dQ, 

Near 2=0, both \Ii and B are parabolic in £, and so the equation of motion can 

be written as 

This equation is an example of the classic, time dependent, linear, harmonic 

3 oscillator, studied by many authors, most recently, Symon. It is well knmvn 

that if �(t) changes slowly enough (w/w« w), the action integral is invariant 

and is given by 



J = w 

so that the parallel energy is 

w W, . (0) = - WI (0). IJ. Wo t io 

5 

If we assume the electrons are initially isotropic, and that the anisotropy 

slowly increases to 6, then 

2 ,.y
Ui (0) = 

2 Wllio (0) 
WJ... (0) J.o 

An exact treatment at this point would require us to calculate the time 

evolution of the ion distribution function. Such a calculation is not only 

difficult, but it violates our initial assumption that the form of the ion 

distribution function remains unchanged. It is more realistic to assume an 

isotropic ion distribution than to try to calculate the anisotrop� because 

non-adiabatic scattering is very strong for energetic ions in non-uniform 

magnetic fie1ds. 4 We will instead consider a "typical" particle for which 

kTi = W
lli (0) = �i (0). 

Substitution gives 

Solving for T., J. 

Ti = -2
1 

(T. -Til ) ± -2
1
y'(T, -T. ) 

2
+4TII T. e . J.o e I e J.O e J.O 

Only the + sign in front of the radical is physical, since we require T .=Ti J. 0 

for 6=1. For the u sual case of T, » T. , we obtain Ie J.O 

T. = Ti e. J. 0 



Other special cases are 

{ 'I
i = 

Tiol6-

T. =T. +T e � �o II e 

6 

for T «T. . 1/ e �o 

Unfortunately, the result is in terms of the parameter 9 which is diffi-

cult to measure experimentally and even more difficult to calculate. We note 

however, that e can be determined from the electron density distribution along 

a field line by 

9 = 1 
n e 

B 
V"B ' 

or from the potential distribution by 

The above equation shows that in assuming l e� / kT I «l we have implicitly 

assumed that 9-1«1. For VII Te=O, as originally assumed, the floating po­

tential gradient is identical to the plasma potential gradient. We can also 

place a t heoretical upper limit on e by noting that the anisotropy ceases to 

increase when the particles mirror at the resonance, so that 

9 < 
B (0) 

B -B(O) ' res 

This heating calculation is probably inadequate to explain the experi-

mental results for two reasons. First, the electron anisotropy is probably 

not large enough to produce the observed heating, and second, the ions 

should cool quick ly after the heating is turned off as the electrons become 

isotropic. This heating is, in fact, just caused by the adiabatic compression 

of the ions as they try to follow the electrons into the low field region. 
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A more interesting effect arises when the electron heating is strong and 

the anisotropy develops so quickly that the ions behave non-adiabatically. 

3 
Symon has shown that an exact invariant exists for this case, and that the 

mean value of J, averaged over all initial phases, after a change in W is 

given in terms of the initial value J as 
o 

where w
1 

is the final w and C is the amplitude of the non-adiabatic jump. 

For w
1

C«1, Symon has shown that C is given approximately by 

where 

I
eo • 2 . 

w C = � e 
�� dt 

1 w -00 

<f> = I
t 

w ( t) dt • 

We now assume a special form of w e t) that we expect to approximate the actual 

variation when an anisotropy suddenly develops: 

w ( t) 

Then, 

Also, 

so 

( for t<O ) 

( for t>O ) . 

for t>O ) , 

2i( W1
-Woh[ -ti T 

e e e 
o 

2iw t 
o 

dt 
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Squaring gives, 

2 2 where the last approximation is valid for W T » 1 (Le., where the anisotropy o 

builds up over many bounce periods) . The increase in Ti is then given by 

2 
2 WI Tio 2' W o 

.Z 
W 

[1 + 0
4] 

4.u o 
dT de 1 .J..e Straightforward differentiation of w(t) , assuming -- = ---- ---- gives dt Til eo dt 

i1JZ 
o 

--= 

4w4 
o 

We could at this point approximate the 1 ast term by 

dT. � 
CIt 

= 

T.-T. � 1.0 
T 

and solve the problem exactly, but it is easy to argue on physical grounds 

that dTi
/dt « dTJ.e

/dt, since the ions are heated indirectly by the electrons. 

With this approximation, we can solve the quadratic equation for Ti as before 

to obtain 

where 

T. = 
1:.
Z[T. (I+A) -T" J+ 

1:.
2 .. /[T. -T. (1+Pl]2+4T" T. (l+A)e , 1. 1.0 e VI Ie �o e �o 

M 
A 

= 

32S kT. �o 

Ti 
= T. e (1 +A) • 1.0 
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The first term is the reversible adiabatic heating, and the second term is 

the irreversible non-adiabatic heating. If the anisotropy slowly disappears 

after the electron heating is turned off, the resulting ion temperature would 

be given approximately by 

1 2 dT 2 
T

i ';t 3�Sk (-T-'. '-
+
-
T
--) ( �

e) 
0 ],0 II eo 

which is to say that the transit time of an ion between its mirror points is 

the order of the time required for T to change appreciably as a result of 
e 

electron cyclotron heating. Since dT /dt is proportional to the microwave 
e 

2 
power P

o
' we can venture the prediction that T

i 
is proportional to P

o
' 

Furthermore, we expect T
i 

to be fairly independent of microwave pulse length 

above a certain value since the heating is caused mainly by the turn-on 

transient. Note also that T. is independent of plasma density, in contrast 
J. 

to other coupling mechanisms such as coulomb collisions, but that T
i 

in­

creases in proportion to the ion mass, and is largest when the electrons and 

ions are initially cold. 

The above calculations represent only the lowest order estimate of ion 

heating by microwaves since nearly all quantities are expanded in a power 

series, and only the first non-vanishing terms are kept. In particular, it 

would be interesting to include higher terms in the expansions of e�/kT, B(£), 

6(t), and w/w2. Also, one should consider other electron distribution 

functions, such as those experimentally measured, or loss cone distributions 

for mirror machines. Finally, it would be useful to calculate the time 

evolution of the ion distribution function including non-adiabatic and cou-

10mb scattering. However, the simple calculation performed here will hope-

fully provide a starting point for understanding and interpreting experimental 

observations, and for developing a more exact theory of ion heating by ECRH. 
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