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Previous calculations of cyclotron resonance heating (both electron 

and ion) in the toroidal octupole have considered only the effect of 

resonance at the fundamental. This was justified by noting that harmonic 

absorption scales like some positive power of k.,).p which is a small quantity 

for most of our experiments. The purpose of this note is to examine more 

carefully the conditions under which the above approximation is valid and 

to derive formulas for calculating the harmonic cyclotron heating of both 

electrons and ions. 

It is well known (see, for example, O. Eldridge, Phys. Fluids 15, 

676 (1972)) that the heating rate for a group of non-relativistic, 

monoenergetic, charged particles (charge e) in a uniform magnetic field 

B with a perpendicular rf electric field E,J.. (frequency w, wavenumber k) 
is given by 

dW _ n 2 00 ( 2 Nk4. vJ.. 

dt - 2 e E� 
N=l )

I
N-l ( w ) o(NB - Bo)' 

where Bo = MW/e. For a non-uniform field, the heating rate can be 

averaged over the plasma volume assuming the particle density to be 

constant in space, giving the result 

dW _ n j;oo 
2 

dt - 2V L: I
N-l , N=l 

If we further assume an isotropic Maxwellian distribution and average 

the above equation over all velocities, we obtain the result 

2 (x) eEJ.. 0 (NB-B 0) dV, 

2 2 where X = NKT k� /Mw and IN_I(x) is a hyperbolic Bessel function of order 

N - 1. 

To illustrate the magnitude of the finite temperature effect, we can 

expand the above expression in powers of the quantity x keeping only terms 

of first order: 
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This expression can be rewritten in a more familiar form as 

where E10 is the electric field at some reference position and G
l

, G
2 

are 

dimensionless, temperature -dependent heating efficiencies for the funda­

mental and second harmonic respectively: 

G1 (B 0) = � 
B � ) (1 � X)� 0 (B � B 0) dV 

:.Lo 

� B j. 
E

2 
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Note that in the cold plasma (X = 0) limit, G
2 

= 0 and G
l 

reduces to the 

ordinary G that we have previously used. The effect of non-zero temperature 

is in lowest order to reduce slightly the fundamental heating and to add 

some heating at the second harmonic. 

It can also be shown that the dominant heating term for the N -th 

harmonic can be written as 

so that 

G (B ) ::: 
3'IT 

v

B
o ( X2 3 0 - 16 ) 

Electron Cyclotron Heating 

o (B - B /3) dV, etc. 
o 

Consider first the low density ECRH case in which the electric fields 

are homogeneous and isotropic and have a wavelength equal to that in free 

space. Then the largest value X may have is NKT/mc
2

. Since mc
2 

= 511 keY, 
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it is clear that for our plasmas G
I 

never departs significantly from the 

usual G, and G2 is important only in cases where G
I 

is zero (no funda­

mental resonance present). 

In order to evaluate G2
, we average over the spectrum of k� to obtain 

G (B};;; 2rr 
B

o (IT. o(B - B /2) dV. 2 0 3 V )wc2 0 

For temperature constant in space, G2 can be written 

Similarly, for G
3 

we obtain 

2 
G

3 
(Bo) ;;; �b (

IT2) G(Bo/3), etc. 
me 

Therefore, if G(B ) is known, no additional calculation is required to o 

get G2, G
3

, etc. 

Ion Cyclotron Heating 

For the ICRH case, no obvious simplification is possible since both 

E,L and kJ.. vary greatly over the volume. However, if we take X small, T 

constant in space, and kJ..:;;: V.l. E.L/E..,L.' the second harmonic term can be 

written as 

B IT f VJ..EJ.. 2 
GZ (B

o
) ;; rr VO (-) ( ) 

Mw
2 E10 

Once G2 is known, the first order correction to G
I 

can be calculated from 
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In order to calculate G2 an existing computer code (GICALC) which 

calculates G for protons in the small toroidal octupole with a fifth hoop 

in the midcylinder near the floor was modified. Figure 1 shows G(Bo) , 

2 GZ(Bo)' and Gl + GZ = G(Bo) + G2(Bo) - 1/2 GZ(2 Bo) for KT/f = 100 eV/ 

2 MHz , where Bo = 0.615 f �z)/B(kG) and B is measured at the intersection 

of the midplane with the outer wall. It is clear that for the temperatures 

now being achieved in the octupole, the harmonic corrections are not 

negligible. The general effect of non-zero temperature is to broaden the 

resonance that occurs when the resonance zone is just above the fifth 

hoop. 

In order to proceed further, we calculate numerically a �G(B ) which o 

is to be added to the zero temperature G(Bo) as a first order temperature 

correction: 

6G(Bo) ; G2(Bo) - i G2 (Z Bo)' 

and fit the results from GICALC to an analytic function as follows: 

AG = 

-1.75 x 10-5 B 3.8 � o fL. 

-5 -5 KT (3.95 x 10 - 4.8 x 10 Bo) 
f2 

9.5 x 10-5 B -1.88 � 
o fL. 

where KT is in eV and f is in MHz. 

Bo < 0.9082 

0.9082 < B < 1.9204 - 0-

B > 1.9204 o 

This correction was then added to program SIMULT which calculates 

the spatially-averaged ion temperature and other plasma properties as a 

function of time in the small octupole with ICRH. (The second and third 

harmonic terms for ECRH were also added to SIMULT, but that has little 
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effect for normal operation as shown previously.) Figure 2 shows the 
f 

predicted peak ion temperature vs ICRH frequency for a typical case without 

(0) and with (x) the finite temperature correction. In all cases, the 

result is to decrease KT. by - 20 - 30 eV. Figure 3 shows the peak ion 
1 

temperature vs the poloidal bank voltage for fixed ICRH frequency (2 MHz) 

again without (0) and with (x) the finite temperature correction. At low 

bank voltages, the ion heating is somewhat enhanced by the second harmonic 

effect, but for the higher bank voltages more typically used, the heating 

is uniformly reduced. 

In summary, we have shown that the finite temperature correction for 

ICRH, though not negligible, is not of great importance. Other finite 

temperature effects such as the relativistic mass increase, doppler effects, 

and non -circular gyromotion due to VB, have been neglected. Relativity 

is completely unimportant for ions (MC
2 

= 938 MeV) , and the doppler effects 

mainly shift the position of the resonance, but don't greatly effect the 

heating rate. The VB effect may be important since VB/B - VE/E, but the 

calculation of the resulting heating is beyond the scope of this paper, 

and might better be a part of someone's Ph.D. thesis. 
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