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No ECRH experiment in a plasma device large compared with the free space wave-

length at the heating frequency has achieved densities greater than a few tenths of 

the critical density defined by w = w. Experiments in the small Toroidal Octupole at 
p 

Wisconsin
l 

showed that the heating rate drops precipitously for w 2 � 0.1 w2• Wong 
p 

in PLP 560 provided a quantitative explanation of this phenomenon in terms of the evan-

escence of the right circularly polarized cyclotron wave in a narrow zone on the low 

field side of the resonance. However, his calculation assumed a solution of the form 

i(k(x)x-wt) 
e in a region where 

1 dk 

k2 dx 
is much greater than unity, and so it is subject 

to question. Furthermore, the predicted density limit was about half of what was ob-

served experimentally. Since the s caling of density with microwave frequency and mag-

netic field configuration is critical to understanding the behavior of cyclotron heated 

bumpy tori (EBT), it is appropriate to attempt a more exact calculation. 

The starting point for such a calculation is the one-dimensional wave equation: 

+ 

Taylor expanding w (x) about the resonance at w = w gives 
c c 

where 6x is the width of the evanescent zone: 

t��J w 
c 

= 0 

w • 

a . 



-2-

The resulting differential equation is highly non-linear, and so it was solved nu-

merically in the evanescent region 6x < x < 0 where E(x) is real. The boundary 

conditions were taken as 

and 

E (x 

dE 
dx 

-6x) 

(x = -6x) = 0 • 

The second condition results from the fact that k = 0 at x = -frx. The numerical 

solution gives E(x = 0), and since the heating rate scales as E2(0), the normalized 

heating rate is E2(0)/Eo2, which turns out to be a function only of the quantity 

L / 
dw 

(scale length of field gradient) = w c 
c 

dx 
w w 

c 

and A = 2wc/w (free space wavelength of microwaves). 

The result is shown in the figure along with the calculation by Wong for comparison. 

The two results are seen to differ significantly. A useful analytical expression that 

-(2TIW 2L/W2A)
3/2 

models the result to within about 20% over the range shown is given by e p 

Roughly speaking, the ECRH becomes ineffective whenever the normalized heating rate falls 

below l/Q where Q is the quality factor of the microwave cavity in the absence of plasma 

(typically 104 ). This result is believed to account for the density limit in the Octu-

pole, EBT, and other ECRH devices. It is not an optimistic scaling for large devices 

with high frequency microwaves (L/A » 1), however, since the density in such devices is 

predicted to fall considerably short of the critical density. 

1 
J. D. Barter, J. C. Sprott, and K. L. Wong, Phys. Fluids 12, 810 (1974). 



K*E 
SEMI-LOGARITHMIC 5 CYCLES X 70 DIVISIONS 

� 
46 6212 

� 
KEUFFEL & ESSER CO. MADE IN U.S.A. C) � � 

§ 
c 0- - '" W ... "' .,... 
<:) - tV W ... '" 0'\ '..J 00 1.0 I I I I I I I 
- N W ... '" 0'1 """-J 00 1.0 I I I I I I I I I I I I I I I I 

OJ ... '" 
� �POI\D: 

I I I I I I I I I I I I I I I I I I I I I I I I 
I I I 

I 
I I I I I I I I 

I I I I I I I I I I I I I I 
I I I I I I I I I I I I I I I I I I I I I I I I I I 

0 

N 

-f=" 

, 
(}\ 

, 

� 

-

() 


