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Past measurements were made with the MKI antenna, which consisted of a
1/8"™ x 1" x 6" strip of copper which viewed the plasma through a 1/2" thick
Macor window. This assembly was mounted in a pump port located on the bottom
of the machine. While useful for propagation measurements, it was actually
very inefficient at coupling energy to the plasma via the fast mode. The thick
evanescent region between the antenna and plasma resulted in very poor coupling,
as most of the energy was reflected back to be deposited on the walls. Figure l
shows that for our densities and a typical mode number of 7, the evanescent
length is about 8 cm. This is comparable to the plasma to antenna spacing.

As heating goes as |E|2, this gave a maximum power transfer of ~ 15% of input
power.

Experimental evidence is shown in Fig. 2. This shows the ion saturation
current, roughly proportional to density, and the drive current to the oscillator,
which is monotonous though not linear to increased plasma loading. Since the
plasma forms initially near the edgel and is then carried inward as the discharge
progresses, the loading for the MKI antenna also peaked early in time, and then
decreased. Installation of a limiter sharply dropped the initial heavy loading,
while leaving the mature discharge unaffected.

To improve coupling, a new, insertable MKII antenna was fabricated. Shown
in Figure 3, it is similar electrically to the MKI, but is insertable into the
tank. It is encased in a Macor block, though it currently has no Faraday shield.
Figure 4 shows the marked impovement in loading characteristics. Loading now is
constant during the entire discharge. Figure 5 gives the normalized loading
with different antenna spacings. The loading is relatively constant over a
range of several centimeters, as the increased coupling competes with the limiter
action of the antenna.

Since most of the data concerning actual heating was performed in a short

period of time, there is considerable room at various interpretations. Figure 6



shows the increase in ion temperature measured by Doppler broadening at the
C IIT 4647 & line. The quick saturation at OTi is probably due to saturation
of the loss cones which should be especially bad in our machine due to the
very small toroidal plasma current. Another possibility is that the impurity
dopant may be decoupling from the majority protons. This occurs when the
equilibration time between the two species is near the ion energy confinement
time. More data needs to be taken, but the same OTi measured by both HE II
and C III lines, which have different equilibtation times, argue against this.
Perhaps the most perplexing aspect is shown in Figs. 7 and 8. There
appears to be no dependence on either plasma loading or heating with changes
in the toroidal field. This may imply significant loading by electrostatic
modes. A Faraday screen is being added. Figure 9 shows a disturbing dependence
of impurity radiation on applied RF power. This effect may be simply edge
heating, or hopefully is the result energetic ions impacting a dirty machine.
Fig. 10 shows a sharp increase in soft x-ray emission. This is probably a
result of a combination of electron heating and the increase ion and electron

concentrations caused by impurity influx.
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INTENSITY (arbitrary units)
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SOFT X-RAY EMISSION
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