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High Power lCRF Heating in Tokapole 11* 
A.P. BIDDLE and J .C. SPROTT.' University of Wisconsin­
Nadison--Doubling of 

'
io� temperat:ures has been observed 

at �2wci in normal hydrog en discharges using both 
Doppler broadening and charge exchange techniques� 
Resonance dependent temperature increases of 307. with 
�w . at the plasma edge and increases of 15% with only 
�3cknd 4wci in the 'plasma have also been observ:ed. Th� 
increase of ion temperature saturates at an RF power 
level of ,::150 kW in a c1ean machine and =350 kW when 
impurity radiation is high • . At. high ion .temperatures, 
and. for low plasma current!s

i 
significant losses to the" 

internal rings are expected and evidenced by increasitlg 
copper line radiation. The possibility of modifying 
this loss mechanism and the resultant impurity reflux 

_�by electrically biasing the internal rings is being 
�p10red. Additionally, continued RF discharge cleaning 
has also been eff icient in reducing impurity levels by 
as much as 80%. This cleaning has resulted in an 
anomalously high ohmic discharge

"
ion temperature 

suggesting turbulent heating mechanisms. 
' 

Ie.E. Kieras and D.A. Skinner, Confinement'limits for_ 
.Energetic Ions in Tokapo1e II. abstract this meeting. 

'*Work supported by USDOE. 
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In May 1979, a new antenna (figure 1) was implemented in Tokapole II 

in oonjuction with the existing 2 MW RF source (figure 2). This antenna 

consists of a one turn copper loop insulated in a block of Maco r machinable 

ceramic. A Faraday shield has recently been added, but the data present 

here is exclusively concerned with unshielded operation. Operation has 

been normally at Bt=4 kG to place the second harmonic proton resonance zone 

on the minor axis. Figure 3 shows the typical experimental sequence. The 

new antenna shows good coupling when inserted beyond the low density 

evanescent region at the plasma edge, with a corresponding increase in 

heating efficiency (figure 4). The decrease at the maximum insertion 

occurs when the antenna protrudes beyond the separatrix, shown in figure 2, 

and begins to reduce the confining central current channel. 

The new single channel charge exchange analyser has been made 

operational, and has verified past ion temperature measurements using 

Doppler broadening techniques. It has been possible to double the ion 

temperature (figure 5) in standard plasmas. The maximum available increase 

is ion temperature is not limited by the available RF power (figure 6). 

Instead, the temperature saturates at a power level that varies from - 350  

kW in a dirty machine t o  a s  little as -120 k W  when the device i s  clean. 

Recently, higher powers have tended to actually depress the temperature, 

possibly d ue to increases of impurity influx. Figures 7 and 8 illustrate 

the importance of correct placement of the resonance zones. Figure 7 

concentrates on the second harmonic, a nd shows a strong peak in heating 

efficiencies on axis. Figure 8 demonstrates that when higher cyclotron 

harmonics are present in the plasma there is still some heating at lower 

co upling efficiencies. These results are not instrumental, as Doppler 

techniques gi ve similar results. The increase in temperature is slightly 
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greater than quoted in figure 6 because of a reduced neutral filling 

pressure. The one point where no heating appea rs occurs when there is no 

multiple of the cyclotron frequency present. Figure 9 shows that with -400 

kW of power, the actual temperature achieved is independent of which 

harmonics are used, pro viding only that at least one is present in the 

plasma. 

While plasma heating seems to be in accordance with theory, the exact 

lo ss mechanism are not yet completely understood. Figure 10 shows that the 

achievable temperature increase is only a weak function of the plasma 

current. A possible principle loss mechanism is charge exchange ( figure 

1 1) .  In the region in which the plasma temperature is saturated, the 

charge exc hange signal is a linear function of RF power, and within 

experimental error, extrapolates through zero at zero RF power. Other 

mechanisms are being investigated, as is a tentative finding of increased 

electron temperature. 
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ION TEMPERATURE vs RF POWER 
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Ti vs Plasma Current 
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