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SCALING OF SYNCHROTRON RADIATION WITH MULTIPOLE ORDER 

J.C. Sprott 

Kerst (PLP 819) has estimated the synchrotron radiation loss for a low 

beta mu1tipo1e of arbitrary order. This note addresses the same problem using 

a simpler and more general flux-space argument. Also included are some useful, 

numerically-derived, scaling laws for maximum field and stable flux as a 

function of mu1tipo1e order. 

The synchrotron radiated power from a volume dV containing plasma with 

density n, non-relativistic electron temperature T , and magnetic field B is 
e 

given by (Rose and Clark, page 251): 

dP = 6.2 x 10
-20 

B
2

nT dV 
e 

All units are mks except T which is in eV. Averaging over a flux tube 
e 

containing magnetic flux d� gives 

� 

where dl is a unit length parallel to B. 

If n and T are constant along a field line, the radiated power can be written 
e 

as 

dP 
6.2 x 10

-20 
nT 1 Bdl �= e ' 

From Ampere's law, g, Bdl is just �
o 

times the total hoop current I
T

' provided S 

is negligible. (For high S, one would also include the diamagnetic current 
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enclosed by the flux surface.) Hence the total synchrotron radiated power is 

which can be written in a convenient, machine-independent form: 

p 

where the brackets < > denote a flux space average, and �
T 

is the total flux in 

the device. This relation has been verified by numerical integration of the 

Larmor radiation formula for a particle trapped near the separatrix of various 

order multipoles. 

In order to proceed further with a determination of the influence of 

multipole order on radiation losses, it is necessary to have relations between 

IT' �
T

' and maximum field. A numerical calculation was done for an ideal, 

linear multipole in which N current filaments with equal currents were placed 

uniformly around a circle of radius a. The maximum field on the separatrix 

and the flux per unit length L between the separatrix and �-critical were then 

calculated for various N. The total flux �T was assumed equal to twice the 

flux between the separatrix and �-critical, in order to account for the private 

flux. The results, normalized to the same maximum field on the separatrix, are 

listed in the table on page 3, assuming a constant �-space distribution of 

electron energy density. 
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IT(MA) IBa I/!
T

(webers)/BaL 
2 2 

N P(watts)/nT B a L 
e 

2 (quadrupole) 3.55 0.127 3.52 x 10-20 

3 (hexapo1e) 3.17 0.176 4.35 x 10-20 

4 (octupo1e) 3.00 0.177 4.14 x 10-20 

5 2.92 0.168 3.82 x 10-20 

6 (dodecapo1e) 2.85 0.157 3.48 x 10-20 

8 2.79 0.137 2.98 x 10-20 

10 2.75 0.126 2.69 x 10-20 

20 2.70 0.080 1.68 x 10-20 

50 2.62 0.041 0. 84 x 10-20 

(tokamak) 19.48 x 10-20 
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The tokamak case was calculated simply from 

and so it is representative of any circular cross-section device in which the 

magnetic field is essentially uniform. Low order multipoles have typically 

5 to 10 times less synchrotron radiation than the corresponding tokamak, and the 

advantage increases linearly with order at very high order. An additional 

improvement of <nT
e

>
�

/<nT
e

>
V 

could be expected if the �-space averaged electron 

density in a multipole is smaller than the volume-averaged electron energy 

density in a tokamak. A first order relativistic correction can be included 

by replacing T with T (1 + T /204000) everywhere. Finite S and reabsorption 
e e e 

of the radiation will, of course, alter these conclusions. 


